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ABSTRACT

QUANTUM LIMITED DETECTION AND NOISE IN
SUPERCONDUCTING TUNNEL JUNCTION MIXERS

Dean Willett Face
Yale University
1987

High quality Superconductor-Insulator-Superconductor (SIS) tunnel
junctions with small subgap leakage currents and a "sharp" current rise at
the sum-gap voltage have been produced for studying strong quantum mixing
effects at 36 GHz. These junctions employ a Ta or Nb base electrode and
a Pby¢Bi,, counter electrode. The novel step-defined process used to
fabricate these junctions yields junctions with small areas (1-6 pm?), high
critical current densities (10% - 10* A/cm?), low subgap leakage currents
(< 1%), and a "sharp" current rise of width av ~ 30 v at the sum-gap
voltage. These junction properties are required for the experimental
observation of strong quantum mixing effects at 36 GHz which are discussed
in this thesis.

The relatively new technique of ion beam sputter deposition is also
described in this work. This technique was used for preparing high quality
Nb and Ta refractory superconducting films on room temperature substrates.
These films were used in the fabrication of SIS mixers discussed above.

The transport and electrical properties of these films were characterized
and found to approach those of the bulk material. In addition, it was



found that the crystallographic structure of Ta films could be easily con-
trolled by the deposition of a thin Nb underlayer. Ta films deposited with-
out 2 Nb underlayer grew in the well known g-phase (tetragonal) which was
not superconducting, while Ta films deposited on a thin ( > 34) Nb under-
layer grew in the desired bec (superconducting) phase with a T of ~ 43K.

Accurate mixer measurements at 34.5 GHz with a 1.5 GHz intermediate
frequency (IF) gave single sideband mixer gains up to G = 1.1 £ 0.1 and
mixer noise temperatures as low as Ty, = 3.8 + 1.0K. This value of Ty, is
close to the quantum limit of Ty = #w/kln2 ~ 2.5K. The lowest receiver
noise temperature measured at the 1.3K input to the mixer block, Ty = 24 +
1K, is the lowest reported for any heterodyne receiver. The quantitative
dependence of the gain and noise on subgap leakage current and I-V sharp-
ness for different tunnel junctions was also characterized and compared
with the three port quantum mixer theory. This comparison shows that the
three port theory underestimates the experimental noise power by a factor
of 1.5 to 2 for all of the junctions measured. For junctions with I-V
curves that are not "sharp” compared to #w/e, the experimentally measured
gain is ~ 2 dB below the theoretical prediction. For junctions that are
"sharp” compared to #w/e, the theory predicts large or infinite available
gain for a significant range of experimental parameters where large gain
was not observed. These discrepancies are likely due to the failure of the

three port approximation for junctions that show strong quantum effects.
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I. INTRODUCTICN

1.1 SIS Mixers and Quantum Limited Detection

A classical resistive mixer is a non-linear device that combines a local
oscillator frequency (w,) and a signal frequency (w) to produce an
intermediate frequency (wp = wg - wg) as shown in Fig. 1-1. The
conversion gain (G) of such a device is generally improved for sharper I-V
characteristics, but is always limited to values of G < 1 in the classical
mixer theory [Torrey and Whitmer, 1948]. An ideal Superconductor-
Insulator-Superconductor (SIS) tunnel junction has an extremely non-linear
current vs. voltage (I-V) characteristic due to the rapid onset of quasi-
particle (single-electron) tunneling at the sum of the energy gaps of the
two superconductors. This "sharp” non-linearity naturally suggests the
application of SIS tunnel junctions as efficient resistive mixers. In recent
years, the SIS quasiparticle mixer has, in fact, surpassed all other mixer
technologies (such as Schottky and super-Schottky diode mixers) for use in
low noise millimeter wave heterodyne receivers and is even comparable with
maser amplifiers at some frequencies. It is now fair to say that most
future advances in radio astronomy (in the 30 GHz to 500 GHz band) will
likely be made with receivers based on SIS mixers. These advances would
not have besn possible without the combined efforts of advanced microfab-
rication, tunnel junction materials science, and good microwave design. It
is hoped that this thesis conveys the excitement and interdisciplinary nature
of this field.

If the non-linearity of the I-V characteristic is "sharp" on the voltage
scale of #w/e, an SIS mixer can show remarkable quantum effects such as
conversion gain (G > 1) and a noise power approaching the quantum limit of
one photon per hertz (P, = #wav). Py = #wav corresponds to a noise
temperature of Ty = #w/kln2 = 2.5K at 36 GHz. The SIS mixer is a very

1
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Block Diagram of a Heterodyne Receiver

RECEIVER MIXER IF AMPLIFIER
T N

/P, Ge(P oo +Py)

SIGNAL f

| f f

=T o~ Tee!

LOCAL
OSCILLATOR (LO)

N
Pﬁ% +P,

Fig. 1-1  Block diagram of a heterodyne receiver. Ge is the coupled
power gain of the mixer (coupled output power at the IF / available input
power at the signal frequency). Py, is the noise power of the mixer
referred to the input of the mixer. P} is the noise power of the IF
amplifier referred to its input. Py is the receiver noise power referred to
the input of the mixer. The receiver noise power Py is minimized by the
use of large gain and low noise mixers.
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interesting type of device in that it simultaneously displays important

effects that are due to the "particle-like" character of the input radiation
(photon assisted tunneling) as well as the "wavelike" character (mixing).
These distinctly quantum mechanical effects are predicted by the quantum
theory of mixing [Tucker, 1979] and have been experimentally observed by
several groups [McGrath et al, 1981; Kerr et al. 1981; D’Addario, 1985].
For a recent review of progress in this field see Tucker and Feldman, 198S.
These previous experiments, however, were limited by relatively poor
junction quality in terms of I-V "sharpness" (except for McGrath et al,,
1981) and a large noise measurement uncertainty that was comparable to the
magnitude of the noise itself. These experimental limitations precluded
accurate comparisons with the Tucker theory in the regime of strong
quantum effects (large gain and low noise) especially where noise properties
near the quantum limit were concerned. The exact dependence of mixer
gain and noise on junction quality also had not been investigated. These

issues thus provided the major motivation for this thesis work.

12 Materials and Fabrication

The fabrication of small area (~ 1 ym?) high-current-density (~ 1000
A/cm?) tunnel junctions with nearly ideal BCS I-V characteristics is
essential to the study of strong quantum effects in SIS mixers. The small
area is required to keep the junction capacitance small while the high
current density is required to produce a junction this small with a resis-
tance of ~ 50 0. Chapter I discusses some of the trade offs in the choice
of materials and deposition technique in order to achieve nearly ideal I-V
characteristics. In short, Ta was chosen as the most promising base
electrode material because it forms a high quality oxide tunnel barrier, is
thermally cyclable to 4.2K , and has a reasonable Te (~ 44K). Alternative

tunnel barriers are also discussed in chapters III, IV, and V. The new
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technique of ion beam sputter deposition is described in chapter III along
with its unique advantages. The ion beam sputter deposition technique
turned out to be very useful in that it allowed us to control the nucleation
of different crystallographic phases of Ta by simply depositing (or not
depositing) a Nb underlayer before Ta deposition. Chapter IV describes a
novel step-defined fabrication technique which eliminates photoresist
processing between critical junction formation steps. Combined with a dc
glow discharge oxidation process and gentle surface cleaning, the step-
defined technique produced nearly ideal SIS tunnel junctions.

1.3 Microwave Mixer Measurements

With high quality junctions in hand (after considerable hard work) we
have collaborated with W.R. McGrath and P.L. Richards at the University of
California at Berkeley to make accurate measurements of mixer gain and
noise. These measurements and the test apparatus are described in chapter
VL. The novel test apparatus designed and constructed by the Berkeley
group was essential to characterization of the mixing properties of high
quality Ta and Nb junctions that were made at Yale. The careful experi-
mental work required to fully understand and characterize the noise sources
in the apparatus is an achievement in itself. This level of sophistication is
essential, however, when trying to measure noise near the quantum limit at
36 GHz because even the thermal (blackbody) radiation noise from a 2.5K
source will be comparable to the noise from a high quality SIS mixer. In
fact, the test apparatus employs just such blackbody noise sources as cali-
brated noise standards for comparing with the mixer noise.

By measuring junctions with different subgap current levels, we were
able to determine the relatively weak dependence of mixer noise on these
currents. By measuring junctions with both broad and sharp current rises

at the sum gap we were able to quantify the relative benefit of increasing
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the sharpness of the current rise at the sum gap. One of the lowest
leakage Ta junctions gave a mixer noise temperature of 3.8¢1K which should
be compared to the quantum limit of 2.5K at 36 GHz. These results are
compared with the 3-port approximation of the quantum mixer theory in
chapter VIL

A significant dependence of the mixer gain on the image impedance
was also observed. (If the signal frequency is given by wg = w o + wp
then the image frequency is given by wpyagg = wio - wy) The impe-
dance at the image frequency is theorctically expected to have a significant
effect on the conversion gain of the mixer as discussed in chapter VII. We
found that the nairow rf bandwidth of our mixer block provided signifi-
cantly different si image im| with a large IF of 1.5 GHz
This results in a_relatively low gain = 1,1). A smaller IF of 25 MHz,
however, gave approximately equal signal and image impedances and large
gain G >> 1. The explanation of this effect was not obvious at first and

required some careful analysis.

1.4 Comparison with the Quantum Mixer Theory

The experimental results of chapter VI have been compared with the
three port (i.e., three frequency) approximation of the full Tucker theory as
discussed in chapter VII. Higher order caleulations are considerably more
complex and require additional information on embedding impedances at
higher frequencies which is difficult to obtain. For this reason, our
calculations and almost all others in the literature are made in the three
port approximation. This approximation should be valid for junctions with
large enough capacitance that the harmonic frequencies are effectively
shorted as discussed in chapter II. The results of these model calculations
demonstrate that the three port theory overestimates the measured gain by
~ 2 dB in the low gain regime with rounded I-V curves. When the I-V
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curve becomes sharp compared to #w/e, however, we find that the theory
predicts large and infinite available gains which were not measured. The
detailed dependence of the gain and noise on the dc bias voltage, the LO
voltage amplitude, signal impedance, and image impedance have all been
investigated in the modeling. The purpose of this modeling is to character-
ize the range of experimental conditions over which large gain should have
been observed. The theory also underestimates the measured noise power
by a factor of 1.5 to 2 for both high gain and low gain mixers. The
relative increase of mixer noise power with increased subgap current is,

however, found to be in reasonable agreement with the theory.

"Experience does not ever err, it is only your
judgement that errs in promising itself results which

are not caused by your experiments."

- Leonardo Da Vinci (¢. 1510)



II THEORETICAL OVERVIEW

This chapter provides the basic theoretical framework for understand-
ing the results on superconducting materials, tunnel junctions, and quasi-
particle mixers in the quantum limit that are presented in the following

chapters. The chapter is divided into three major sections,

1.) Theory of superconducting materials
2.) Tunneling in superconductors

3.) Quantum mixer theory and quantum limited detection.

The section on superconducting materials reviews the basic properties of
superconductivity in BCS (weak-coupled) and strong-coupled superconductors
with an emphasis on the consequences for SIS tunnel junctions. We refer
to superconductors with a large electron phonon coupling as being strong-
coupled. The basic phenomenon of tunneling in superconductors is discussed
with an emphasis on the quasiparticle tunneling effects which are most
important for the operation of quasiparticle mixers. Josephson pair
tunneling is not directly relevant for SIS mixers and is only briefly
discussed. Finally, the quantum theory of mixing and its remarkable
predictions for large gain (G >> 1) and low noise (approaching the
Heisenberg uncertainty principle limit) are presented. A simplified picture
of the gain mechanism which removes the complexity of the full theory is
also presented. This simple picture illustrates why quantum mixers can

achieve G >> 1 while classical mixers are restricted to G < 1.

2.1 Theory of Superconductivity and Superconducting Materials
2.1.1 BCS Theory

Excellent treatments of the BCS theory of superconductivity exist in a

7
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number of books [Wolf, 1985; Tinkham, 1975; Rickayzen, 1969] as well as
the original paper by Bardeen, Cooper and Schrieffer, (1957), so only the
essential results will be presented. The basic physical idea behind the BCS
theory is that the exchange of a virtual phonon by two electrons can cause
an attractive electron-electron interaction. The BCS theory takes the
attractive interaction V to be a constant up to a cut off frequency o,

which is on the order of the Debye frequency wp. This attractive interac-
tion is found to be largest for two electrons of equal and opposite momenta
k, one with spin up and the other with spin down. If the attractive
interaction is larger than the repulsive screened Coulomb interaction, a new
ground state (the superconducting state) becomes energetically favorable.
This ground state consists of pairs of electrons +k and -k with opposite
spins called Cooper pairs. The elementary excitations from this ground
state are called quasiparticles and are of primary importance for this thesis.
The density states for these elementary excitations Ng(E) in the BCS theory
is given by,

Ng(E) = N (0)E/(E2 - a2)1/2 |E| = & 2-1

-0 |[E| < &

where Np(0) is the density of states for the normal metal at the Fermi
energy and E is the excitation energy for the quasiparticle which must be
greater than the gap energy o. This is the density of states that is
measured by an ideal SIS tunnel junction (see section 2.2) and is respon-
sible for the extremely sharp current-voltage non-linearity required to
observe strong quantum mixing effects (see section 2.3). It is conventional
and convenient to think of these excitations (quasiholes or quasielectrons)
in a semiconductor-like picture as shown in Fig. 2-1 for tunnel junctions.

The BCS theory also predicts a zero temperature energy gap 4(0) which is



“(bL61) ‘stureyy woyy st (p ((1861) ‘IouIny, pue loznQg

uep woiy a1e o'q‘e) 2, moreq saamjeradwoy jre 1oy idniqe st ded wns 9yj v OSH JUDLIND Y} JeYl SION
OL/L = 1 JO SaN[EA [BI2ASS j8 9AINDd A-] uopoun( [jouuny ,SIS (p 'sopuiedisenb pajpxe Ajjeutayy oyl
Summoys uonounf [auuny ,SIS ue Joj weifeip sorels jo Asuag (0 -ermeradursy Jugseasour 103 uonounf
[ouum NS ue Jo 9amd A-J (q ‘uonodunf youun) NIS ue 10y salels jo Ausuap Juippuuny, (e 1-z 811

[(0)¥7 + (0)*9)/A2

gl [} 50 00
T : T 00
w 2 L4
zL0 A c_dm v
[— g . _ \ \\\\
080) c0= 1 0=t Vf/

-~ 7,7
) 7,7
A v
3 \\\\ u:u::u..._Eu.

— 9 uis

—Js0 N.U Ve 1searu]

Ld
=]

[— — +
3
~
g

B — ot

t
1 | ] ] 1
‘3
43 bt/

"N —————suonmioxg =—|

v
[E2VY o -to / — -
BHUYTTITRES
HIIIELE] v .Ml\.\
e

(N

swoneaIxy




10

given by,

A(0) = #w,/cosh[1/N(0)V] 2-2
= 2we /N0 (N(O)V << 1)

and a finite temperature energy gap a(T) which is given by the implicit

solution of,

1 “c anh [(e2 + 82(T))1/2 7 2xT)
- de 2-3

N(O)V 212 + 22(1)11/2

-hwg
The solution of this equation for Ta (a(0) = 0.69 meV) is plotted in Fig.
3-8 along with a useful approximate form A(T) = 1.74a(0)[1-T/T]/? which
is valid near T,. The superconducting transition temperature T, is found

when a(T) goes to zero and is related to the zero temperature gap a(0) by,
kT, = 24(0)/3.53 2-4

In the BCS theory, no attempt is made to calculate the value of V
from material specific data such as the strength of the electron-phonon
interaction (although it can be estimated). This type of calculation is left
to the Eliashberg theory described in the next section. In this sense, the
BCS theory does not predict the transition temperature of a superconductor,
rather the actual T is used to infer V.

One of the more remarkable and important aspects of the supercon-
ducting state is its insensitivity to impurities and scattering. Although
impurities can change the T and a of a superconductor (through Np(0) and

V), the basic superconducting properties such as the existence of an energy
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gap, the sharp peak in the density of states at 4, and macroscopic phase
coherence of the pair ground state (which leads to zero resistance and the
Josephson effect) are unchanged. Naively one might expect that impurities,
which destroy the ideal plane wave states used to construct the BCS ground
state (with k+ and k- pairing), would modify the BCS predictions.
Anderson, however, has shown [Anderson, 1959] that any external perturba-
tion that does not break time reversal symmetry (such as a non-magnetic
impurity) will leave the thermodynamic properties of the superconductor
unchanged. This important theorem says that many disordered and even
amorphous materials can be perfectly well behaved BCS superconductors
provided they have pairs of time reversed states and a favorable electron-

phonon interaction.

2.12 Eliashberg Theory for Strong-Coupled Superconductors

The strong-coupling theory of superconductivity as originally proposed
by Eliashberg (1960) goes beyond the BCS theory and is fundamental to any
theory that attempts to relate the gap to the basic interactions in the
metal. The required mathematics is far more complex than that involved in
the BCS theory and has been discussed in many excellent reviews [McMillan
and Rowell, 1969; Scalapino, 1969; Wolf, 1985]. The essential physical
difference between the BCS theory and the strong-coupling theory lies in
the assumed nature of the phonon mediated electron-electron interaction.
The electron-electron interaction provided by the final Eliashberg (1960)
electron-phonon function,

E + h
ktq g

v « 2-5
k,k+q 2 2
(Ek+q + hwq) - Ek
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is local in space and retarded in time. This result is in contrast to the
BCS model interaction which is nonlocal in space and instantaneous in time
for any pair of electrons within #wp, of the Fermi surface. The origin of
the retarded interaction is easy to understand. An electron moving through
the lattice will deform the lattice and leave behind a polarization. A
second electron moving through the same part of the lattice can then feel
this polarization and scatter off of it. Clearly, the Eliashberg formulation
more accurately describes the real nature of the electron-phonon interaction
in metals. Details of the required caiculations for the electron-phonon
interaction can be found in several standard texts [Rickayzen, 1980; Fetter
and Walecka, 1971].

At T=0K, the coupled Eliashberg equations for the energy dependent
g2p a(w) and renormalization function Z(v) in an isotropic superconductor
are [Wolf, 1985],

[We
80) = (2] | w'P) [Re(w,0') - #¥) 2-6
ls
(o
1 - 2(w)]w = dw'N(w' )K_(w,0") 2-7
J0
where
A(w)
P(w) = Re|[ ™ 2-9
[w2 . AZ(Q)]I/Z
fol
N(w) = Re| ™™ 2-10
(W? - a20)]1/2

and
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1 1
+ 2-11

W tw+Q+i5 -0+ Q- 16

Ke(w,0') = J:dmzmmm

In these equations, we is a cutoff frequency typically taken as five times

the maximum phonon frequency. a(ag) is the experimental energy gap
measured in a tunnel junction and N(w) is the tunneling density of states.
The only material-dependent quantities here are " and X0)F(a). 4" is the
coulomb pseudopotential (N(0)U,) which approximately characterizes the
screened coulomb repulsion between electrons. o?(0)F() for an isotropic

superconductor is given by,

ds

a2 (Q)F(Q) = J viel 2-12

[
|7

K Z(Q)Fk(ﬂ)

where

2 ds 1 2
Q)F, (Q) = k' - -
2, @) J S mg o 12600 -0y oy ] 213

where vy is the group velocity of state k on the Fermi surface, dSy is an

element of Fermi surface area, and g’ describes electron scattering

from k to k' on the Fermi surface with’ké:eation of a phonon of energy
ﬁw,\,k-k' and polarization ». F(a) is the phonon density of states which can
be directly obtained from neutron scattering. It is possible to obtain the

full function o*(0)F(a) from tunneling measurements which measure N(w) and

8(a) as discussed by McMillan and Rowell, (1969). Since « is not a strong
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function of @, o?F(g) can also be successfully compared with neutron
diffraction experiments [Wolf, 1985]. By using the finite temperature form
of these equations [Rainer, 1974; Vidberg and Serene, 1977], one can also
solve for the transition temperature, T, where A(T) goes to zero.

A useful measure of the electron-phonon coupling strength is given by
the McMillan parameter Agp,

dep = 2 raz(w)F(w)w'l dw 2-14
0

Superconductors with values of dep < lare generally considered to be
"weak-coupled” and those with dep > 1 are "strong-coupled”. This integral
gives the strongest weight to the low frequency phonons and is useful to
keep in mind when considering the phonon spectrum of a superconductor.
In fact, most strong-coupled high T superconductors (such as Pb, PbBi, and
many A-15 compounds (e.g. Nb3Sn)) have a large density of low frequency
phonon modes. Most materials have a maximum density of low frequency
phonon modes that can be supported before the material becomes struc-
turally unstable. This is thought to be one of the fundamental limitations
in creating materials with very high T.’s (T, > 30K) [Varma, 1982].

The main experimental consequences of the strong-coupling calculations
for tunnel junctions are some small corrections (« (T¢/8p?) to the BCS
tunneling density of states due to the energy dependence of a(w) and a
change in the form of A(T). Our experimental measurement of A(T) for Ta
films (see Fig. 3-8) agrees with these predictions ((T¢/6p? ~ 3x10%4 for
Ta) and the findings of other experimenters [Wolf, 1985]). Additional
strong-coupling effects such as gap anisotropy and quasiparticle lifetime

effects are discussed below and in chapter V.



15

2.1.3 Anisotropy of the Superconducting Energy Gap

By considering the k dependence of «%(@)Fy(Q) in Eq. 2-13 before
Fermi surface averaging in Eq. 2-12 it is easy to see that A can depend on
k. The anisotropy in the distributions ,2(2)Fi(a) can be usefully discussed
in terms of anisotropy in

1) the Fermi surface

2) the phonon spectrum

3) the form of the electron-phonon interaction.
Since these anisotropies are well known to exist in most metals, we may
well expect that A depends on k. As discussed by Ohtsuka (1977), the
experiments to date (based on upper critical field measurements) are in
general agreement with respect to the presence of these effects and the
influence of impurities. Impurities are found to introduce scattering which
reduces anisotropy effects by averaging over the Fermi surface. A recent
collection of articles [Weber, 1977] reviews a number of the experimental
and theoretical issues involved in studying anisotropic superconductors.

It is reasonable to expect that tunneling measurements of the gap in
single crystals would show a dependence on the tunneling direction of the
electrons (to the extent that barrier tunneling is regarded as a directional
process with most of the electrons injected in a cone of angle ~10° about
the barrier normal direction (sce Wolf, [1985]). Surprisingly, however, there
seems to be no consensus among the different tunneling experiments on the
same material [Bostock, 1977). Different tunneling experiments by different
groups certainly show effects that appear to be due to anisotropy (i.e.
multiple energy gaps), but the magnitude of these effects and their energy
does not appear to be consistent from one experiment to the next. Recent
work on MBE grown single crystal niobium films [Durbin, 1983] provides
clear evidence for a k dependent o?F(a). Unfortunately, these authors were
not able to obtain convergence with the McMillan [1965] inversion program
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(to obtain o?(R)F(n)) for tunneling in the (111) direction. The 110 direction
produced convergence in the normal fashion . This indicates a fundamental
problem with the tunneling measurement or the model. The non-ideal
nature of many tunnel barriers (as discussed in chapter V) may partially
explain the present difficulties with these measurements. Clearly, further
work and improved tunneling measurements are required to clear up the
quantitative discrepancies in these experiments. Nonetheless, the experi-
mental evidence clearly indicates the presence of anisotropy effects in pure
materials and the destruction (Fermi surface averaging) of these effects by

the addition of impurity scattering.

2.1.4 Quasiparticle and Phonon Lifetimes

The lifetime of low energy quasiparticle excitations and phonons are
important in a variety of phenomena occurring in superconductors. As
discussed in detail by Kaplan et al. (1976), the dominant quasiparticle
relaxation processes are inelastic scattering with phonons and recombination
with other quasiparticles to form a bound Cooper pair with the emission of
a phonon of energy 24 in the process. These lifetimes can be related to
the low-frequency part of the phonon density of states F(n) weighted by
the square of the electron-phonon matrix element o?(n). Kaplan et al.
(1976) have calculated the lifetime of a quasiparticle based on experiment-
ally available information about o?()F(g) for a number of materials. The
rate can be separated into scattering and recombination rates which define
the scattering and recombination lifetimes (rg and r;) respectively. These
authors find good agreement between their calculations and the available
experiments.

For the tunnel junction experiments discussed in chapter V, we are
interested in the lifetime of a quasiparticle at the gap edge and at low
temperatures (T < 1/2 T). As discussed further in chapter V (see section
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5.5.6), short quasiparticle lifetimes can lead to a broadened current rise at
the sum gap in a tunnel junction and reduced mixer performance. For
example, a lifetime r of 10-* seconds corresponds to an voltage broadening
of AV = afer = 100 sV which is significant for SIS mixers at 36 GHz.

Without going into the details of the calculation, Kaplan et al. (1976)
find that the low temperature quasiparticle lifetime at the gap edge is
dominated by the quasiparticle recombination lifetime r;. The phonon
scattering lifetime rg under these conditions (T < 1/2 Ty), is long because
there are relatively few states for a quasiparticle at the gap edge to decay
into by spontaneous phonon emission. The recombination lifetime r under
these conditions (T < 1/2 T and E = 4) is strongly temperature dependent
due to the thermal population of quasiparticles available for recombination,
but is always less than the phonon scattering lifetime for quasiparticles at
the gap edge. The temperature dependent recombination lifetime found by
Kaplan et al. (1976) is approximately given by

5/2 1/2 .
Lo VRO L e y1s
Ty kT, T, o

with typical values of r, for many materials in the range of 1x10- to
1x107° sec. r( can be estimated from the approximate functional form,

3

To % yr

2
< ey (6p/Tc) 2-16
which shows that r, will be shortest for strong-coupled materials (Aep > 1)
with large values of T/, The strong temperature dependence of rp is
clear from Eq. 2-15 and reflects the exponential decrease in the quasi-

particle population at low temperatures.
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2.2 Superconducting Tunnel Junctions

Since the original discovery of tunneling in superconductors by Giaever
(1960), tunnel junctions have been studied intensively by many groups.
Superconductor-Insulator-Superconductor (SIS) and Superconductor-Insulator-
Normal metal (SIN) tunnel junctions are interesting not only in their own
right, but also serve as the most sensitive probe of the microscopic
properties of superconducting state itself. As mentioned above and more
thoroughly discussed by McMillan and Rowell, (1969) and Wolf, (1985) SIN
tunnel junctions can be used to extract «*(a)F(q) which is the product of
the electron-phonon coupling o*(a) and the phonon density of states F(g).
SIS tunnel junctions can also exhibit superconducting pair tunneling
[Josephson, (1962); Barone and Paterno, (1982)]. This macroscopic quantum
effect is the basis of the SQUID (Superconducting QUantum Interference
Device) which has been extensively developed in the last 10-15 years for
ultra-sensitive voltmeters and magnetic field measurement [Barone, 1982;
Van Duzer, 1981]. Our primary interest in this thesis, however, is in the
extremely non-linear quasiparticle I-V characteristic of an SIS junction
caused by the singularity in the superconducting density of states in
Eq. 2-1.

Cohen, Falicov, and Phillips (1962) formulated 2 Hamiltonian theory
that describes the quasiparticle tunneling through a potential barrier in an
SIS junction as illustrated in Fig. 2-1. This formalism can also describe the
superconducting pair tunneling [Josephson, 1962; Barone, 1982], but we will
concentrate on the quasiparticle results. The proposed Hamiltonian is

H= +H + + eV -
HL R HT e (t)NL 2-18

where Hy and Hy, are the Hamiltonians for the left and right electrodes
respectively (i.e. the Hamiltonians that describe the superconducting state
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discussed in section 2.1), V(t) is the applied voltage, and N; is the number
operator for the left electrode. Hi is given by,

+ * +
HT - Z(quckcq+ qucqck) 2-18
k’q
and N; is given by,

+
N = 2-19
ckc )

Here cy and ¢q are the second-quantized operators for particle creation or
annihilation on the left and right respectively. The tunneling matrix
elements Tyq = T‘kq are taken to be sufficiently small that the transfer of
electrons across the barrier may be treated to lowest order in the coupling.
A microscopic calculation of the tunneling current using Green’s functions
and standard linear response theory [Ambegaokar and Baratoff, 1963;
Werthhamer, 1966; Rogovin and Scalapino, 1974] gives the dc quasiparticle

current as,

©

ne

Ige (V) = 27 I dwy dwy Iqu|2 Ap(k,w1) Ap(q,wp)
B kqo Y-
X [£(hwy) - E(hwp)] 6(eV/A + oy - wp)  2-20

where f(rw) is the Fermi distribution function (f(rs) = (¢"“/XT

+ 1)1) and
Ay are the single-particle distribution functions for the left- and right-

side electrodes. For a normal metal tunnel junction, this equation reduces
to

INN(Y) = V/Ry 2-21



20
where,

3
Ry = B 2-22

4ne? Np(0) N (0) <|TZ|>

This is just the equation for a resistor and is commonly observed for non-
superconducting tunnel junctions at low voltage (< 100 mV). If one of the

electrodes is superconducting, then the equation for the current is given by

1 E’
bl ' - - ')] de’ 2-23
ISIN(V) eRy (E'2 . A2) 1/2 [£CE ev) - £(E")]

-

The density of states diagram and resulting I-V curve for this situation are
shown in Fig. 2-1. The SIS" case for two different superconductors has a
quasiparticle I-V which is given by

o

1 |E’] lE’ - eV|
Tsrsr M = e 2 2172 2 2172
N1’ - a) [(eV - E)°- 4]

2-24

x [£(E' - eV) - £(E')] dE’

and shown in Fig. 2-1c and 2-1d for a series of reduced temperatures (t =
T/T¢). Notice that at all temperatures below T, the I-V curve has a
discontinuity at the sum-gap voltage A1 + ap. This results from the
overlap of the singularity in the density of states in Eq. 2-24 which exist
at all temperatures below T.. There is also a difference gap structure
which is due to thermally excited quasiparticles and is strongly temperature
dependent (« et/ kT).

As indicated above and also discussed in chapter V, gap anisotropy and
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short quasiparticle lifetimes generally lead to a width of the current rise at
the sum-gap and I-V curves that differ from the ideal case in Fig. 2-1.
Additional mechanisms for non-ideal junction characteristics, particularly
the mechanisms that explain "leakage” currents below the sum-gap, are

discussed in chapter V.

2.3 Mixer Theory
2.3.1 Mixer Terminology

Any non-linear resistive device can act as a mixer to combine two
input frequencies (a signal, wsig, and a local oscillator, w,) and produce an
intermediate frequency wy = wsig - wo- Mixers are characterized by a
coupled conversion gain G¢ and an input noise power P, More precisely,
the coupled gain of a mixer G is defined to be the ratio of the power

coupled out of the mixer at the IF P§; to the available power at the
signal frequency P4,

G = PS/PA; . 2 25

The term "available power" refers to the power that would be coupled into
a matched load (i.e.,, when the reflected power is zero) while the term
"coupled power" refers to the power that is coupled into the actual load of
interest. The available gain G, is also important and is defined as the

coupled gain G, divided by an IF impedance mismatch factor (1-]5]?),
Gy = G/(1 - [o]?) 2.2
where [5|? is the power reflection coefficient at the IF output of the

mixer. p is the amplitude reflection coefficient. This form is only valid

for |p]2 < 1. If |p|2 > 1 (as is the case for output impedances with a






