
PRL 95, 066602 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
5 AUGUST 2005
Noise Thermal Impedance of a Diffusive Wire
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The current noise density S2 of a conductor in equilibrium, the Johnson noise, is determined by its
temperature T: S2 � 4kBTG, with G the conductance. The sample’s noise temperature TN � S2=�4kBG�
generalizes T for a system out of equilibrium. We introduce the ‘‘noise thermal impedance’’ of a sample as
the ratio �T!

N=�P
!
J of the amplitude �T!

N of the oscillation of TN when heated by an oscillating power
�P!

J at frequency !. For a macroscopic sample, it is the usual thermal impedance. We show for a diffusive
wire how this (complex) frequency-dependent quantity gives access to the electron-phonon interaction
time in a long wire and to the diffusion time in a shorter one, and how its real part may also give access to
the electron-electron inelastic time. These times are not simply accessible from the frequency dependence
of S2 itself.
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For decades, measurements of the electrical response of
condensed matter systems have provided powerful insights
into the physics at the macroscale and microscale.
Measurements of the conductance G � dI=dV (with I
the current when biased by a voltage V) and of the noise
(the variance of the current fluctuations) are examples of
the many successful approaches [1]. Yet, for good con-
ductors, the frequency dependence of the conductance and
the noise is determined only by charge screening by the
electron fluid, due to the long range interaction of the
electrons. For normal metals (nonsuperconductors), the
physics associated with inelastic processes, energy ex-
change, dephasing, or diffusion times is usually accessible
only in the quantum corrections [2] or from tunneling
measurements on specific materials with which tunnel
junctions can be made reliably [3]. Superconductors are
an exception since the gap, and near TC the resistance, is
sensitive to the distribution of excitations. Thus, time- or
frequency-domain transport measurements provide direct
access to the time scales of microscopic processes, such as
electron-phonon inelastic relaxation [4], diffusion removal
of energy [5], or quasiparticle recombination [6].

In this Letter, we develop the theory for a novel ap-
proach to directly measure dynamic processes of electrons
in a normal metal. For an electron system in equilibrium
(V � 0), the temperature is reflected in the Fermi-Dirac
distribution of state occupancy and can be determined from
the Johnson-Nyquist noise. If the occupancy is perturbed in
a charge-neutral fashion, its relaxation is governed by the
microscopic processes that we wish to access. One can
determine the relaxation of the electron temperature (and
more generally, excitations that are charge neutral) from
the time dependence of the magnitude of the noise (mea-
sured at frequencies much higher than the inverse relaxa-
tion time) when the system is driven by an ac voltage. Our
idea is, in essence, to use the driven noise to determine the
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dynamics. This is closely related to the recently proposed
and explored third moment of the current noise [7,8].

We consider a conductor biased by a time-dependent
voltage V�t� � Vdc � �V cos!t. For simplicity, we treat
e�V � eVdc; kBT. The mean square current fluctuations
are measured through the spectral density of the current
noise, S2, integrated over a frequency band �	 around the
frequency 	. In equilibrium [V�t� � 0], S2 � 4kBTG,
with G the electrical conductance [9]. We suppose G to
be independent of T and V [10]. S2 is averaged over a time
�m such that ! � ��1

m � �	;	, to give S2�t�.
Experimentally, this could be implemented by coupling
the sample noise through a bandpass filter centered at
frequency 	 to a bolometer with a response time �m
[11]. We treat low-frequency noise, @	 � eVdc; kBT, so
our conclusions do not depend on 	, �	, or �m. Under the
time-dependent bias V�t�, S2�t� is amplitude modulated at
frequency ! (see Fig. 2, inset). We define the sample’s
noise temperature TN�t� � S2�t�=�4kBG�, and the instanta-
neous Joule power PJ � I�t�V�t� � GV2�t� dissipated in
the sample. From their (complex) components �T!

N and
�P!

J at frequency !, one defines the (complex) response
function R�!� � �T!

N=�P
!
J . R measures how much the

noise temperature oscillates when the system is heated by
an oscillating power. R has units of a thermal resistance,
K=W. For a macroscopic sample, TN is the sample tem-
perature, and R is simply the thermal impedance between
the sample and its environment. Thus, we will call R�!�
the ‘‘noise thermal impedance’’ (NTI) of the sample at
frequency !. It exhibits a frequency dependence on the
scale of the inverse thermal relaxation time. For a thin film
or wire at low temperature, as we consider later, this
thermalization time is determined by energy removal pro-
cesses experienced by the electrons (electron-hole relaxa-
tion) [12].
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In the following, we calculate R�!� for a diffusive wire
of length L between two normal metal reservoirs (see
Fig. 1, inset), in several limiting cases: (i) long wires
Le-e � Le-ph � L; (ii) wires of intermediate length
Le-e � L � Le-ph; and (iii) short wires L � Le-e. Here
Le-ph stands for the electron-phonon interaction length and
Le-e for the energy relaxation length due to electron-
electron (e-e) interaction. These lengths, much longer
than the mean free path, are related to the corresponding
times by, e.g., L2

e-e � D�e-e, with D the diffusion coeffi-
cient. We show that R�!� gives access to the electron-
phonon relaxation time in (i), and that it gives the diffusion
time �D � L2=D for (ii) and (iii). The two latter cases
differ significantly if one measures the real and imaginary
parts of R�!�. Using this difference one can probe the
electron-electron interaction time. Finally, we discuss how
R�!� is related to the third moment of the noise and its
environmental corrections.

A general property of R�!� is that, at low frequency, the
magnitude of the noise follows adiabatically the voltage
variations, such that R�! � 0� � dTN=dPJ. The Joule
power has a component at frequency !, �P!

J �
2GVdc�V, so one has R�0� � �dS2=dV�=�8kBG

2Vdc� [13].
(i) We first consider a long wire, L � Le-ph. The elec-

trons give the energy they acquire from the electric field to
the phonons. We refer to this regime as phonon cooled. For
a wire made of a thin film, the phonons of the film and
substrate are well coupled and represent the thermal bath
[4]. Phonon emission occurs uniformly in the wire, except
near the ends, on a length Le-ph where the hot electrons can
leave the sample without emitting a phonon. Such finite
length effects are negligible for L � Le-ph, so we consider
the electron temperature Te�t� � TN�t� to be position in-
FIG. 1. Real and imaginary parts of R�!� as a function of
!�D, in the hot electron, diffusion-cooled regime (ii) (solid
lines), and independent-electron regime (iii) (dashed lines).
The values of R�0� differ by �10% for eVdc � kBT.
(Inset) The geometry considered: a wire of length L between
two thick normal metal contacts.
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dependent. In the absence of ac excitation, Te�T; Vdc� is
such that the phonon cooling power Pe-ph�Te; T� equals the
Joule power GV2

dc. The electron-phonon thermal conduc-
tance Ge-ph � dPe-ph=dTe has been studied with dc heat-
ing [14]. For ac excitation, we have

Ce�t�
dTe
dt

� PJ�t� � Pe-ph�Te; T�; (1)

where the phonons remain at temperature T [12]; Ce �
�Te is the electron heat capacity. The electron temperature
oscillates: Te�t� � Te�Vdc� � Re��T!

e exp�i!t�	, and

R �!� �
�T!

e

�P!
J
�

G�1
e-ph

�1� i!�e-ph�
; (2)

with �e-ph � Ce=Ge-ph the electron-phonon time at Te.
R�!� is the electron-phonon thermal impedance at tem-
perature Te�T; Vdc�. Measurements of TN�t� for a voltage
step have recently been undertaken [15].

(ii) We now turn to the case of intermediate length,
Le-e � L � Le-ph. This is the hot electron, diffusion-
cooled regime. The energy stored in the sample relaxes
because energetic electrons leave the sample and are re-
placed by thermalized ones coming from the reservoirs.
This occurs on a time scale set by the diffusion time �D.
One can still define a local temperature Te�x; t� since the
electrons equilibrate with each other locally. Te is peaked
along the wire, given by

Ce�x; t�
@Te
@t

� PJ�t� �
@
@x

�
GWF�x; t�

@Te
@x

�
; (3)

with the boundary conditions Te�0; t� � Te�1; t� � T, with
T the temperature of the contacts. x denotes the position
along the wire in units of L: 0 
 x 
 1. GWF is the electron
FIG. 2. Magnitude (thick lines) and real parts (thin lines) of
R�!� as a function of !�D, in the hot electrons, diffusion-
cooled regime (ii) (solid lines, and independent electrons
regime (iii) (dashed lines). Inset: Current noise amplitude modu-
lated by the time-dependent bias V�t�.
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thermal conductance, related to the electrical conductance
G through the Wiedemann-Franz law: GWF � LGTe, with
L � ��2=3��kB=e�2 the Lorentz number. Equation (3) is
linear in T2

e , and we compute

T2
e �x; t� � T2

0�x� � 2Re�A�x;!� exp�i!t�	; (4)

where T0 is solution of the dc case, T2
0�x� � T2�1�

�x�1� x�	, with � � �3=�2��eVdc�
2=�kBT�2, and A the

ac solution of the Vdc � 0 case (usually called the ‘‘weak
heating’’ limit), for which T0 � T. We find

A�x;!� �
�P!

J T

GWFq2

�
1�

coshq�x� 1=2�
coshq=2

�
; (5)

with q �
������������
i!�D

p
. For a small ac excitation and Vdc finite,

the ac response of the electron temperature is given by
�T!

e �x� � A�x;!�=T0�x�. TN is the average of Te along the
wire. For eVdc � kBT, T0�x� ’ T and we obtain

R�!�

R�0�
� 12

q� 2 tanh�q=2�

q3
(6)

and R�0� � G�1
WF=12. We do not have an analytical ex-

pression for R�!� for all Vdc, but numerical calculations
show that the dependence of R�!�=R�0� on Vdc is ex-
tremely weak. Curves for different values of Vdc are indis-
tinguishable on a linear plot. Real and imaginary parts of
R�!� as a function of !�D are plotted in Fig. 1. At high
frequency, !�D � 1, Re�R�!�	 decays as !�3=2, whereas
Im�R�!�	 decays as !�1. The magnitude jR�!�j is plot-
ted in Fig. 2. The frequency for which jR�!�j2 � 1=2, i.e.,
the bandwidth of this ‘‘thermal’’ response, is �10��1

D .
(iii) We now consider the case of elastic transport, L �

Le-e. This is the independent-electron regime, since the
electrons travel along the wire without experiencing inelas-
tic collisions. There is no local temperature, but one can
define a local noise temperature:

TN�x; t� �
Z �1

�1
f�x; E; t��1� f�x; E; t�	dE=kB; (7)

where f�x; E; t� stands for the local energy distribution
function in the wire. If f is a Fermi function at temperature
T, Eq. (7) gives TN � T. The wire’s noise temperature
TN�t� is the average of TN�x; t� along the wire. The distri-
bution function f�x; E; t� obeys the 1D diffusion equation
[16]:

@f�x; E; t�
@t

�
D

L2

@2f�x; E; t�

@x2
: (8)

The effect of the external voltage appears only in the
boundary conditions: f�0; E; t� � fF�E� and f�1; E; t� �
fF�E� eV�t��, with fF�E� the Fermi distribution function
at temperature T. Solving Eq. (8) for f to first order in �V
we obtain the ! component of the time-dependent noise
temperature profile: T!

N �x� / �1� x� sinh�qx�= sinhq, with
q �

������������
i!�D

p
. We deduce
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R�!�

R�0�
� 6

sinhq� q

q2 sinhq
: (9)

For eVdc � kBT, one has R�0� � ��2=108�G�1
WF �

G�1
WF=10:9. This differs from case (ii) by only �10%.

The real and imaginary parts of R�!� as a function of
!�D are plotted in Fig. 1. For !�D � 1, Re�R�!�	 decays
exponentially, whereas Im�R�!�	 decays as !�1. The
magnitude jR�!�j is plotted in Fig. 2. The frequency for
which jR�!�j2 � 1=2 is �9��1

D .
We now compare the three cases. R�!� has a Lorentzian

shape [Eq. (2)] for case (i) and in (ii) has a frequency
dependence that is very similar. The roll-off frequency,
��1
e-ph, of R�!� for phonon cooling (i) is temperature

dependent, since �e-ph / T�p, whereas the roll-off fre-
quency for diffusion cooling (ii) is related only to the
diffusion time and is thus temperature independent. A
measurement of the roll-off frequency of R�!� vs tem-
perature (or dc voltage) in case (i) gives a direct measure-
ment of �e-ph�Te�. The shape of the magnitude jR�!�j in
cases (ii) and (iii) is similar, although case (iii) exhibits a
kink (see Fig. 2). However, the real part of R�!� is quite
different. For the independent-electron regime (iii),
Re�R�!�	 crosses zero and is negative above !�D � 31.
At this frequency, in the hot electron, diffusion-cooled
regime (ii) Re�R�!�	=R�0� has dropped only to �0:1.
This remarkable difference is definitely measurable. Note
that there is no principle preventing Re�R	 from being
negative. This occurs when the average distribution func-
tion in the center of the wire oscillates out of phase with the
excitation voltage.

The case of intermediate electron-electron time, L�
Le-e, is beyond the scope of this Letter, but this could be
considered by adding e-e relaxation to the right-hand side
of Eq. (8). This equation in the limit �e-e ! 0 leads to the
heat diffusion equation (3) [17]. It would be of interest to
calculate how the existence of the zero of Re�R�!�	 in
case (iii) changes with finite e-e strength. Since e-e re-
laxation is energy dependent, the position of the zero
should be voltage and temperature dependent.

In this last section, we consider the relation of our results
to other kinds of noise measurements, and other possible
applications. As a first example of its relation, we can
contrast the NTI we have calculated to the noise under ac
voltage excitation considered previously, the so-called ‘‘-
photon-assisted noise’’ [18–21]. The latter refers to the
effect of an ac voltage on the time-averaged noise. It has
features at eVdc � n@! (with n integer). This differs sig-
nificantly from the NTI, which measures the time depen-
dence of the noise averaged on a time scale �m, revealing
the dynamics of the energy exchanges.

Our result also elucidates the importance of correlations
in the scattering matrix formalism, which has been very
powerful in treating noise properties of coherent systems
[1]. The temperature oscillation can be expressed in terms
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of the fluctuating current at frequency 	, i�	�: �T!
N /

hi�	�i�!�	�i [22]. Thus, R�!� involves correlations
within the scattering matrix at different energies separated
by !. These correlations, on the scale of the Thouless
energy @=�D, are responsible for the frequency dependence
of R�!� on the scale of ��1

D for cases (ii) and (iii). As a
consequence, R provides a direct probe of the correlations,
which are not considered in usual calculations of S2.

Our calculation sheds new light on the environmental
effects on the third moment of noise. These have been
considered recently [8,23], specifically for tunnel junc-
tions. It has been calculated that the external current noise,
by modulating the noise emitted by the sample, does
contribute to S3 [23]. This mechanism has been explicitly
demonstrated in experiment by applying an ac voltage to a
tunnel junction and detecting S3 [8]. Since R�!� describes
the modulation of the noise of the sample by one external
frequency, one can simply write the extrinsic contribution
to S3 as /

R
d!Senv2 �!�R��!�, with Senv2 �!� the noise

emitted by the environment; we suppose here @! �
eV; kBT.

Our approach for the NTI can also be used for the
calculation of the environmental effects on S3 for a diffu-
sive wire. In particular, we predict that the contribution of
the environmental noise to S3 vanishes at frequencies much
larger than ��1

D . The intrinsic contributions to S3 of a
diffusive wire also decays for frequencies >��1

D , even for
voltage bias [7]. We believe this also may be understood
from the behavior of R�!�. Certainly the measurement of
R�!� is simpler than that of S3.

The frequency scale of R�!� in cases (ii) and (iii) is set
by the escape time of the electron-hole excitations from the
wire. We believe this statement applies qualitatively to
other systems. Indeed, in chaotic cavities, R�!� should
also decay on the scale of the inverse dwell time (as S3 does
[24]); in a quasiballistic wire, it likely decays on the scale
of the inverse transit time L=vF, with vF the Fermi veloc-
ity. The use of our method for a carbon nanotube may
provide an example of its applicability. For most single
wall nanotubes, it is not known if the conductance results
from scattering that is equal for all four quantum channels,
or from some of these channels being blocked and the
others open. The time scale determined from R�!� might
distinguish these two cases. The noise relaxation time scale
of R�!� for a normal metal wire between superconducting
reservoirs should also be studied. We suspect that the
relaxation time for this case is much longer than �D,
because electron-hole excitations of energy smaller than
the superconducting gap of the reservoirs cannot escape the
wire.
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