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Energy resolution of terahertz single-photon-sensitive bolometric detectors
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We report measurements of the energy resolution of ultrasensitive superconducting bolometric
detectors. The device is a superconducting titanium nanobridge with niobium contacts. A fast
microwave pulse is used to simulate a single higher-frequency photon, where the absorbed energy
of the pulse is equal to the photon energy. This technique allows precise calibration of the input
coupling and avoids problems with unwanted background photons. Present devices have an intrinsic
full-width at half-maximum energy resolution of approximately 23 THz, near the predicted value
due to intrinsic thermal fluctuation noise. © 2010 American Institute of Physics.

[doi:10.1063/1.3336008]

Terahertz (THz) detectors have seen rapid development
during the past decade. However, an energy-resolving THz
single-photon detector—i.e., a THz calorimeter—has re-
mained elusive. Previous work on semiconductor quantum
dot detectors has demonstrated THz single-photon detection,
but with a complex device geometry, low quantum efficiency
(~1%), and without photon energy resolution."* The super-
conducting bolometric detector has the potential to achieve
energy-resolved THz single-photon detection with high
quantum efficiency in a device with a relatively simple
geometry.3’4

For a hot electron bolometric calorimeter, with a mea-
surement bandwidth equal to the intrinsic device response
bandwidth, the energy resolution is limited by thermody-
namic fluctuations, and scales as

—
&Eimrinsic ~ VkBTZCe’ (1)

where C, is the electronic heat capacity, proportional to the
active device volume and the operating temperature T
Thus, for sensitive detection, operation is at low temperature
and all dimensions of the device are much smaller than a
wavelength. Efficient photon coupling can be achleved by
integrating the device in a planar THz antenna. " An array of
such detectors is essential for progosed next-generation
space-based far-infrared telescopes.” This detector would
also create possibilities for THz spectroscopic studies at the
single-photon level, such as measurements of the THz emis-
sion from individual nanostructures.'’

The detector we have studied consists of a superconduct-
ing titanium (Ti) nanobridge approximately 4 wm long, 350
nm wide, and 70 nm thick, with T,~0.30 K (Fig. 1). The Ti
nanobridge spans contacts consisting of thick niobium (Nb)
with T, ~8 K. The fabrication process has been described
prev1ously The dimensions of the Ti nanobridge were cho-
sen to have an impedance close to 50 () in the normal (non-
superconducting) state to facilitate efficient high-frequency
coupling.

For photons with a frequency greater than the upper

~3.5kgT./h=22 GHz at T<T,, the nanobridge impedance
is approximately equal to the normal state resistance R,
~40 Q. In practice, the superconducting energy gap in the
Ti is strongly suppressed by the bias current and temperature,
so the relevant frequency scale is well below 22 GHz. The
temperature rise due to an absorbed photon is AT=hf/C,,
where f is the photon frequency, assuming that no energy is
lost while the electron system reaches a thermal distribution.
The larger superconducting energy gap in the Nb contacts,
Axp=1.2 meV in our films, creates Andreev mirrors that
inhibit the outdiffusion of heat from the Ti nanobridge.3
The time for the initially excited photoelectron to share its
energy with other electrons in the Ti and relax below Ay, is
Too~(2X IOSR Anp/kp)'~0.1 ns, where Ry, is the sheet
resistance.’ The initial excitations will spread a distance
~(D7,,)"?~0.1 um, where D is the diffusion constant,
while the excitations cool to below Ayy,. The subsequent en-
ergy removal is by electron-phonon coupling within the Ti,
with an intrinsic thermal time constant 7y=C./Gy~ us,
where Gy, is the electron-phonon thermal conductance.™

A test system to study the detector response to single
THz photons is under development but has presented signifi-
cant technical challenges. A THz source coupled from out-
side the cryostat must be highly attenuated due to room tem-
perature blackbody photons. Even with a source internal to
the cryostat, the radiation power absorbed in the device must
be SfW to avoid exceeding the detector count rate. This
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frequency scale for superconductivity in the Ti, fp FIG. 1. (Color online) dc resistance as a function of temperature measured
with 1 nA bias current. Inset: scanning electron micrograph of Ti nanobo-
lometer device on silicon substrate. The strips of Ti below the Nb contacts
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FIG. 2. (Color online) Schematic of experimental setup for fauxton testing.
LP stands for low-pass filter and BP stands for band-pass filter. Some at-
tenuators and filters have been omitted for clarity.

requires carefully calibrated attenuation of the source and
filtering of the out-of-band photon flux.

To facilitate rapid device characterization, we have de-
veloped an alternative testing technique that is easier to
implement and avoids the problem of unwanted background
photons (Fig. 2). The device is mounted in the light-tight
inner vacuum can of a *He cryostat with a base temperature
of 230 mK. Absorption of a single THz photon is simulated
by absorption of a 20 GHz microwave pulse with a duration
of 200 ns, which is much shorter than 7,. We call this pulse
a faux photon, or fauxton. The fauxton frequency fp, . ion
=E,;,/h, where E, is the absorbed energy of the microwave
pulse, is adjusted simply by changing the amplitude of the
microwave signal. The system coupling efficiency at 20 GHz
is calibrated precisely above T, using Johnson noise ther-
mometry, by comparing the temperature rise from a 20 GHz
signal with the temperature rise from a known dissipated dc
power. Since 20 GHz is greater than the frequency for super-
conductivity in the Ti, the impedance of the Ti nanobridge is
approximately equal to R,, as it is for an actual THz photon.

The resistance change when a fauxton is detected is re-
corded by measuring the change in the reflected power at 1.4
GHz. The 1.4 GHz probe signal reflected by the device is
amplified using a low noise cryogenic amplifier (Ty=5 K).
The probe signal is amplified further and narrow band-pass
filtered at room temperature, and then mixed with a phase-
matched 1.4 GHz reference signal. The mixer output is low-
pass filtered with an optimum bandwidth determined by the
frequency crossover between thermal fluctuation noise and
amplifier noise.” In our measurements, we chose 100 kHz as
the bandwidth that empirically gave the best signal-to-noise
ratio. This microwave measurement of the device impedance
change takes advantage of the low noise cryogenic amplifiers
and isolators available at these frequencies and avoids prob-
lems with electromagnetic pickup at lower frequencies.

The biasing condition is set by resistors mounted at the
base temperature (R, and Ry, in Fig. 2). The biasing line
connects to the device through the dc port of a bias-tee,
which has a bandwidth from dcto5 MHz. We used Ry,
=1 MQ and Ry, ;=50 or 3 Q. Ry, determines both the dc
biasing condition as well as the load line seen at all frequen-
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FIG. 3. (Color online) Average and single-shot device response to 50 THz
fauxton.

cies relevant to the thermal response. The optimum dc bias
point is like that of other superconducting bolometers. '

Reunt=50 Q corresponds approximately to the case of
matched source and load impedances, in which case there is
no electrothermal feedback." In this case we should measure
the intrinsic time constant, 7p=C./Gy,. We find 7p=7 us, in
good agreement with Ref. 4. With Ry, =3 (), we have
strong negative electrothermal feedback, which speeds up
the device response.6 The response time with strong negative
electrothermal feedback, 7., depends on the bias point, 7.
=75/ (1 +L[R—Rgpun)/[R+Rgpun]) with R=V/I and L
=(dV/dI-R)/(dV/dI+R)." We find that the bias point with
the optimum signal-to-noise ratio corresponds to a time con-
stant of approximately 3.9 us.

We next consider the detector energy resolution. At dif-
ferent fauxton frequencies, we measure a sequence of 10°
pulses with Ry, =3 ) and record each single-shot wave-
form. As an example, in Fig. 3 we plot a single-shot wave-
form and an averaged waveform for fp, 0, =50 THz. In the
linear response regime and with no noise, the peak height is
proportional to fg,,on- We determine the peak height by av-
eraging over a 2 us window. We then make a histogram of
the peak heights of all 10? single-shot measurements for each
fauxton frequency. The histograms are fit to a Gaussian func-
tion to extract the average peak height and the full-width at
half-maximum (FWHM).

In Fig. 4, we plot the histograms for fauxton frequencies
of 25 and 50 THz, as well as for no fauxtons with the same
1.4 GHz probe power and the same bias point. We find that
the best signal-to-noise ratio is obtained using a probe power
that significantly reduces the critical current. The device re-
sponse is linear with fauxton frequency, with a total FWHM
energy resolution OE,/h=49=*1 THz. We also plot the
histogram for no fauxtons with the bias current well above
the superconducting critical current I, where the device is, to
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FIG. 4. (Color online) Histograms of single-shot device response to 50 THz
fauxtons, 25 THz fauxtons, and no fauxtons. Response with no fauxtons is
measured with the device optimally biased for detection. With the device
above I, we measure the noise contribution from the amplifier.
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FIG. 5. (Color online) Measured noise spectrum at the mixer input, ex-
pressed as a noise temperature referred to the input of the first stage ampli-
fier. The noise is measured both with the device at the optimum bias point
and with the device in the nonsuperconducting state.

a good approximation, a temperature-independent resistor. In
this case, the energy resolution should be limited by ampli-
fier noise (plus a much smaller contribution from Johnson
noise). We find 6E,,,,/h=43 THz FWHM. The intrinsic de-
tector noise and amplifier noise are assumed to be uncorre-
lated, hence OEg = 0B, + 0B} e €1Ving  SEjyyingic/h
~23 THz FWHM.

The theoretical FWHM energy resolution is related to

the noise equivalent power (NEP),

| ® 4df -1/2
8B, =212 In 2“0 NEPZ) . (2)

Within the device response bandwidth, the dominant source
of device noise is thermodynamic fluctuations, with a corre-
sponding NEPt2h=4kBT2Glh.5 We can estimate the intrinsic
energy resolution by using NEPy, in Eq. (2) with an upper
limit of integration equal to the measurement bandwidth of
100 kHz. Using G;,=2.6 X 1072 W/K based on Ref. 4 and
T=0.3 K, we obtain 6E;,/h=20 THz. This is in reasonable
agreement with our experimental determination of the intrin-
sic energy resolution.

We also measured the output noise spectrum to deter-
mine if it is consistent with the measured energy resolution.
In Fig. 5 we plot the noise power measured at the mixer
input, expressed as a noise temperature referred to the input
of the first stage amplifier. The noise was measured with no
fauxtons at the optimum bias current and probe power, as
well as with the bias current well above I.. Well above
I., the device is in the fully nonsuperconducting state and
the noise is dominated by amplifier noise. At the optimum
bias point, we fit the data to Ty(f)=Tym,+To/ (1+[27m(f
—1.4 GHz)7.4]%) with T,mp the noise measured above I, and
Ty and 7. determined from the fit as 5.0 K and 3.9 us,
respectively.

The device responsivity S was determined by measuring
the response to a square-wave-modulated 20 GHz excitation,
with §=1.7X 107 V/W. From the measured noise tempera-
ture and responsivity, we determine NEP(f)." Using this in
Eq. (2), we predict 8E,,/h=50 THz with an upper integra-
tion limit equal to the measurement bandwidth of 100 kHz.
This result is in good agreement with the measured energy
resolution. We note that the frequency-dependence of the de-
vice noise is well described by the Lortentzian functional
form expected for statistical thermal fluctuations, and it does
not exhibit the excess noise seen in larger-area superconduct-
ing transition edge sensors."”
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If the amplifier noise temperature were reduced to
TnS1 K, as reported in recent studies,'®"” the total energy
resolution would be dominated by intrinsic device noise
rather than by amplifier noise. The amplifier noise and the
thermal fluctuation noise contributions to the energy reso-
lution should both scale as the square root of the active de-
vice volume."* Hence future smaller devices should achieve
an improved energy resolution by reducing the Ti nanobridge
volume, and this improved energy resolution would not be
limited by amplifier noise if the amplifier were satisfactory
for the larger volume device.

Ultimately, the goal is the compare the fauxton technique
to the detection of real THz photons. The fauxton technique
avoids several significant complications of real photon detec-
tion, including imperfect optical coupling and the loss of
energy from the initial photoexcitation due to outdiffusion or
the emission of a high-energy phonon. Thus, the fauxton
technique is not only a useful tool for preliminary device
characterization, it can also be used for understanding detec-
tor nonidealities in real optical experiments.
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