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ABSTRACT

Quantum Chaeotic Scattering
and Ballistic Electron Transport
in Microcavities

Mark William Keller
Yale University
1995

Experiments are reported on quantum electron transport in micon-sized
cavities made from the two-dimensional electron gas of a GaAs/AlGaAs
beterostructure. The cavities are fabricated in a manner that allows the electron
density to be varied by a gate voltage without affecting the cavity size or shape.
Various cavity shapes are studied for which the classical scattering is either chaotic
or non-chaotic. At low temperature (= 0.1 K) the conductance of the cavities
exhibits fluctuations as a function of magnetic field or Fermi wavevector. The
power spectra of these fluctuations are compared to a semiclassical theory of chaotic
scattering, and the typical area enclosed and length traveled by the electrons are
extracted for each cavity. The typical areas and lengths are compared with the
expected values from simulations, and the extent of disorder in the cavities is
inferred from the comparison. The weak localization effect in the cavities is also
studied. The ensemble average behavior is constructed explicitly by measuring the
weak localization at many different values of Fermi wavevector for each cavity.
The weak localization is compared with simulations and found to agree remarkably
well with no adjustable parameters. For both the fluctuations and the weak
localization, the behavior of a nominally non-chaotic cavity could not be

distinguished from that of the chaotic cavities.
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1

INTRODUCTION

The experiments described in this dissertation continue a thread of
investigation into low temperature electronic conduction known as "mesoscopic
physics". The name refers to the fact that the metallic conductors involved are
larger than the atomic scale, but smaller than the macroscopic scale where transport
can be described in terms of average intrinsic properties such as conductivity. The
. defining length scale for mesoscopic physics is the electron phase coherence length,
since all mesoscopic effects arise from coherent scattering and interference of
electron waves. There are some relatively famous effects associated with this
branch of physics, such as the Aharonov-Bohm effect, Weak Localization, and
Universal Conductance Fluctuations, that have been studied both theoretically and
experimentally in Yale's Department of Applied Physics in the past. For general
reviews of mesoscopic physics see Imry, 1995 (theory), and Washburn and Webb,
1986 (experiments).

One of tiie major concepts that arose from the early work in mesoscopic
physics was the idea that electron transport through a phase coherent conductor is
equivalent to a quantum scattering process (Landauer, 1970; Buttiker, 1986).
Measurements of electrical resistance can be completely described in terms of a
scattering matrix which couples incoming and outgoing scattering channels. The
early mesoscopic experiments used metal film samples in which electron transport
was diffusive, i.e., electrons scattered from random impurities much more often
than from the edges of the structure. The details of the scattering potential were not
known, and the problem of transport was treated theoretically by averaging over all
possible configurations of impurities with the same impurity density. In the last
several years the development of GaAs/AlGaAs heterostructures with very high
electron mobility has allowed access to a different regime of electron conduction,
known as the ballistic regime because all large-angle electron scattering occurs at the
edges of the structure rather than at random impurities. In this regime the quantum
scattering from a particular scattering potential, determined by the sample shape,
can be studied. Such samples offer an experimental system for studying the
quantum scattering properties of shapes for which classical scattering is chaotic,

1



which is a topic of great interest recently. Chaotic scattering in both classical and
quantum systems is described in Chapter 2.

Two familiar phenomena in mesoscopic physics are Universal Conductance
Fluctuations (UCF) and Weak Localization (WL). Both effects have been
thoroughly studied in diffusive conductors and are well understood in that context.
For reviews, see Lee, Stone, and Fukuyama, 1987 (UCF) and Bergmann, 1984
(WL). UCF are seemingly random variations in conductance observed as the
magnetic field, Fermi energy, or impurity configuration is changed. WL is a
decrease in the average conductance (averaged over any of the parameters that
produce the fluctuations) due to constructive interference of backscattered electrons
in the presence of time-reversal symmetry. The experimental signal of WL is a
minimum in conductance at zero magnetic field, since the field destoys the WL as it
breaks time-reversal symmetry. Ballistic conductors also exhibit conductance
fluctuations and a zero-field minimum in conductance that are exactly analogous to
the effects seen in diffusive transport. The theory of these effects in ballistic
cavities, and the influence of the chaotic or regular (= non-chaotic) dynamics of the
classical analogues of the cavities, are described in Chapter 3.

Chapter 4 covers the design and fabrication of ballistic microcavities for
experimental studies of quantum chaotic scattering. Two fabrication techniques,
low energy ion exposure and shallow wet etch, were used to create cavities whose
electron density could be changed (using an overlying metal gate) without affecting
the shape. This is an important feature of the samples used in this work which was
not shared by the samples used in studies of quantum chaotic scattering by other
researchers.

Chapter 5 contains a description of the apparatus used to measure the
conductance of the cavities as a function of magnetic field or Fermi energy at
temperatures of about 100 mK. The dilution refrigerator system described here
represents a significant advance in the facilities for low temperature experiments at
Yale.

The experimental results for five ballistic cavities (four chaotic and one
regular) are presented in Chapter 6. The power spectrum of the conductance
fluctuations is used to find the tvpical area enclosed and typical length traveled by
electrons before escape from each cavity. These areas and lengths are compared
with values from numerical simulations. The WL for three of the cavities is also -
compared with numerical simulaions. The fluctuations and WL in the regular



cavity are compared with the effects seen in the chaotic cavities. Some of the
results for two of the chaotic cavities have been published: Keller ez al., 1994.

Chapter 7 contains a summary of the experimental results and a discussion
of the conclusions that can be drawn from them. The findings are compared with
recent studies of quantum chaotic scattering in similar ballistic cavities by Marcus ez
al., 1992, Berry et al., 1994a and 1994b, and Chang ez al., 1994.



2

THEORY OF CHAOTIC SCATTERING

2.1 Classical Chaotic Scattering

The fundamentals of classical chaos are covered in many textbooks and
review articles. The article by Jensen, 1987 is a good overview and the textbook
by Baker and Gollub, 1990 covers the basics quite well. Empirically, the defining
feature of chaos is a lack of predictibility in a deterministic system due to an extreme
sensitivity to initial conditions. To deal with chaos in scattering systems, the ideas
of chaos in closed systems must be extended to the case of finite interaction time.
This will first be illustrated using a model system which displays the main features
of classical chaotic scattering. The specific case of scattering in chaotic cavities will
then be described.

2.1.1 Three Disk Model System

The geometry of the three disk scattering system is shown in Figure 2.1a.
A classical particle of fixed velocity approaches the scattering region at an angle
O, scatters among the disks for a time Tygp, and exits at an angle ©,,,. The
scattering function A@ = O;, — O, is plotted as a function of the impact
parameter b in Figure 2.1b. For most intervals of b the scattering function is a
piecewise smooth function with a finite number of discontinuities. If the entire
range of b showed this behavior, the scattering would be called regular (non-
chaotic). However, near b = 2.3 and b = 4.5 the discontinuities in A® become
closely spaced and when the axis is expanded, as in Figure 2.1c, they are found to
occur on all scales. It can be shown that A@is singular at values of b which form
a fractal set. (This feature of the scattering phase space is analogous to the fractal
nature of the phase space of closed chaotic systems.) In any small interval of &
around one of the singularities, AGXb) varies wildly, and the amplitude of the
variations in AGXb) does not tend to zero as the size of the interval is reduced. This
extremely sensitive dependence of a scattering function on an initial condition is the
defining feature of chaotic scattering. As in closed chaotic systems, any uncertainty
in initial conditions makes it impossible to predict the response of the system. The
rigorous justification for labeling such scattering chaotic follows from an analysis
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of the dynamics on the subset of phase space that represents unstable trapped
trajectories (those which enter the scattering region but never leave). Particles that
enter very near one of these trapped trajectories remain in the scattering region for a
long time before finally escaping, and it is these trajectories which are responsible
for the singularities in the scattering function. Figure 2.1d shows the correlation
between a long trapping time and the rapid variations in AG(b).
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Figure 2.1 Three disk model system which displays the main features of
classical chaotic scattering. The shaded disks are infinite potential barriers
which scatter a particle entering with fixed velocity and angle, and variable
impact parameter b. (a) Scattering geometry showing definition of impact
parameter b. Arrow is the incoming trajectory for b= 3. (b) Scattering

function A@ = Oy, — Oy versus b. (c) Expanded view showing
fluctuations in AG(b) on all scales. (d) Trapping time versus b showing

correlation between chaos in AG(b) and long trapping time. From
Smilansky in Giannoni et al., 1991.



2.1.2 2D Scattering Cavities

The classical analog of the experimental system which is the subject of this
dissertation is a two-dimensional scattering cavity such as the one shown in Figure
2.2. Particles enter and leave through the straight sections which are referred to as
leads. If a single particle were injected into such a cavity, one could study a
scattering function just as for the three-disk system. The scattering would be
regular or chaotic depending on the shape of the cavity. These single-particle
dynamics are not accessible in a cavity formed from an electron gas since many
electrons with various initial conditions enter the cavity simultaneously. Therefore
we must consider a classical analog with a distribution of injected particles. The
quantities of interest are then the probability distributions for the length traveled
. inside the cavity and the directed area! enclosed by the particles before escaping.
These distributions have been calculated for cavities of various shapes by
numerically integrating the classical equations of motion.2 There is also an
approximate analytical method for finding the distributions which relies on the
mixing property of chaotic cavities (Jensen, 1991). This method reveals how the
distributions change with lead width for fixed cavity shape, but it cannot be used
for regular cavities.

P T e e e e e e s e e

Figure 2.2 A ballistic conductor with a scattering cavity. Particles enter
through the left lead, scatter around inside the cavity, and escape through
either lead.

1 The directed area of a path in this context is defined in terms of the effective flux
that would result if a magnetic field were present: A = —;—L:utg «dl where Ais the

vector potential and B is the magnetic field. For closed paths (in = ou), it is the
same as the net geometrical area (taking rotational sense into account).

2 A large number of particles with fixed velocity and a distribution of initial angles

(usually cos6) is injected into the cavity and the trajectory of each particle is
followed as it bounces from the boundaries of the cavity, which are typically
combinations of straight lines and circular arcs. When each particle escapes, the
path length and the area are recorded to form the two distributions.



From many studies of classical scattering in cavities, it is known that the
length and area distributions are qualitatively different for cavities in which the
scattering is chaotic as compared to those for which it is regular. When the
scattering is chaotic,3 both distributions are exponential:

P(L)<e ™ 2.1

P(A) o< ¢~ 270lAl 2.2)
Here P is probability, L is length, and A is directed area.4 The details of the cavity
shape affect the parameters ¥ and ¢, but the distributions are always exponential as
long as the scattering is chaotic. (This implies that there is always a typical scale for
these distributions in the chaotic case, and this uniform functional dependence is
referred to as "universal".) When the scattering is regular, the distributions are
generally power laws:

P(Lye< L™ (2.3)

P(A) <A™ 2.4)
The details of the cavity shape affect the exponents my and my. (Since the
distributions have different functional forms for different regular cavities, regular
scattering is referred to as "non-universal".)

The distribution of time spent in the cavity, P(?), is also of interest and can
be obtained from P(L) by noting that L = vt for ballistic transport. A fourth
distribution that is sometimes useful is that for the number of bounces with the
cavity walls, P(N). This is related to P(L) through N = L/Lyy,;, where Ly is the
typical distance travelled between bounces. Thus we have

P(t)ce™® (2.5)
P(A)e<e™™ (2.6)
for chaotic cavities, and analogous power law distributions for regular cavities.

3 Here we restrict the term “chaotic” to mean only “hyperbolic” chaotic scattering.
There are also “nonhyperbolic” systems with a mixture of chaotic and nonchaotic
structures in phase space. These systems have chaotic scattering functions but
nonexponential distributions of escape times. For details see, for example,
Gutzwiller, 1991.

4 The factor of 277 which appears in equation (2.2) comes from the definition
introduced in Jalabert, Baranger, and Stone, 1990 and used in all subsequent work
by these authors and most other researchers in this field. It appears somewhat

strange since 27, and not « itself, is the inverse of the typical area. However, it
turns out (see Chapter 3) that the typical magnetic field scale for quantum effects is

close to that which produces one flux quantum (#/e) through the area 1/¢, so the
definition in equation (2.2) is convenient, although potentially confusing.



The distributions in equations (2.1) and (2.2) are only valid for L and A
larger than some minimum length or area. This is not surprising because, as we
saw in the three disk system, chaotic behavior in the scattering function is correlated
with a long trapping time. For the exponential form to hold, the particles must
scatter enough times from the walls that their initial momentum distribution
becomes randomized into a uniform distribution (Jensen, 1991). This
randomization, also known as mixing, usually occurs faster than the typical escape
rate from the cavity, so equations (2.1) and (2.2) will always hold when the
exponent, }L or 27zalAl, is larger than about 1. If the mixing time is much shorter
than the escape time, they will also hold for much smaller L and A. (Analogous
arguments apply to equations (2.5) and (2.6).) For regular cavities there is a
similar limited range of validity which must be determined by examining the results
of the simulations for each cavity.

Typical distributions found by numerical simulation for a chaotic stadium
cavity and a regular square cavity are shown in Figure 2.3. The exponential and
power law forms are clearly followed for large L and A. The fundamental
difference between chaotic and regular scattering is reflected in the different forms
of these distributions. As discussed in the next section, these distributions
influence the scattering properties of the quantum mechanical analog.
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Figure 2.3 Classical distributions of area and length. (a) Area
distribution for a stadium cavity with chaotic scattering. Area axis is
normalized by the total area between the lead openings, Ay, (b) Length
distribution for a square cavity with regular scattering. Length axis is
normalized by the direct distance between the lead openings, Lg;,. Adapted
from Baranger, Jalabert, and Stone, 1993b.



2.2 Quantum Chaotic Scattering

Applying the ideas of chaos theory to quantum mechanical systems requires
some care. Chaos is characterized by an extreme sensitivity to initial conditions that
arises from nonlinearity in the equations of motion. The solutions of the linear
Schridinger equation do not display this property. Furthermore, the uncertainty
principle limits the resolution with which quantum phase space can be divided, so
the infinitely fine structure of chaotic phase space is not possible, at least for long
times. However, the Schrodinger equation is believed to apply to any system
regardless of the presence of chaos, and it is expected that there will be some
signatures of chaos in quantum systems. The field of "quantum chaos" is
concerned with these signatures, i.e., it is the investigation of the features of
quantum systems that reflect whether the classical analog is chaotic or regular. This
field has become very active in recent years. Reviews of quantum chaos in general
are Gutzwiller, 1991 and Giannoni ez al., 1991. A review of quantum chaotic
scattering by Smilansky can be found in Giannoni et al., 1991.

Quantum scattering is generally described in terms of a scattering matrix S
which relates incoming and outgoing channels. A typical element Sn,m(E)
describes the amplitude for a scatterer with energy E to enter in channel m and leave
in channel n. The properties of S for model systems that can have either regular or
chaotic classical scattering were investigated by Blumel and Smilansky (Blumel and
Smilansky, 1988, 1989, and 1990; Smilansky in Giannoni ef al., 1991). Using a
semiclassical approximation for S, they calculated various correlation functions
which revealed the statistical properties of S. Based on the results, they proposed
the hypothesis that when the classical scattering is chaotic, S will have statistical
properties that are consistent with S belonging to a particular ensemble of random
matrices having the appropriate symmetries. (For a review of random matrices in
the context of quantum transport theory, see Stone et al., 1991). Random matrix
theory makes several specific predictions about distributions and correlations of the
elements of S. Blumel and Smilansky tested their hypothesis using numerical
simulations of quantum scattering in their model systems. They found that when
the classical scattering was chaotic, S did obey the predictions of random matrix
theory.

The semiclassical approximation is the central tool in the analysis of
quantum chaotic scattering. A full quantum solution often yields little insight into
complex behavior, but a semiclassical analysis can show how the complex quantum
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behavior arises from features of the classical dynamics. This is illustrated in the
case of the autocorrelation function 4
Cr.m(AE)=(S} B+ AEYS, m(ED) @.7)

for which Blumel and Smilansky found the following result when the classical
scattering is chaotic:

C, . (0)
Com(AE)=—2—
n.m(AE) 1-iAE/ 1O

The striking feature of this result is that 8 here is the same 6 that appears in the
classical probability distribution of time spent in the scattering region, equation
(2.5). Thus, the autocorrelation function of the quantum S matrix is determined by
a property of the chaotic dynamics of the classical analog. As discussed in the next
chapter, the conductance of a microstructure at low temperature can be expressed in
terms of the elements of S. Equation (2.8) therefore establishes a link between a
quantum transport measurement in a ballistic cavity and the chaos in the scattering
of classical particles in the same cavity. This link is the fundamental physical idea
behind the experiments presented in this dissertation.

(2.8) .
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CHAOTIC SCATTERING AND QUANTUM
TRANSPORT IN BALLISTIC CAVITIES

3.1 Introduction

Soon after Blumel and Smilansky's work on the S matrix, the ideas of
quantum chaotic scattering were applied to the transmission coefficients of a
scattering system (Doron, Smilansky, and Frenkel, 1991) and also directly to the
- conductance of ballistic cavities (Jalabert, Baranger, and Stone, 1990; Baranger,
Jalabert, and Stone, 1993a and 1993b). The results of these studies are several
predictions that will be compared with the experimental results described in Chapter
6. Before the predictions themselves are described, some background ideas must
be covered. A general reference for quantum transport in semiconductor
microstructures is Beenakker and van Houten, 1991.

3.2 Basic Concepts of Ballistic Quantum Transport

The incoming and outgoing channels for scattering in a ballistic cavity are
the waveguide modes of the leads. By convention, the x-direction is along the lead
and the y-direction is transverse to the lead. The cross-section of each lead is
assumed to be an infinite square well of width W, so the wavefuntions are sine

functions with the allowed transverse momenta given by

nmw
k,=— = 1,2,3,... 3.1
Y= W n (3.1)

Electrons can occupy all the modes with ky < kp, so the number of propagating
modes is the integer Int[kgW/r]. (The subscript F will be dropped from here on,
but any k should be understood as the Fermi wavevector.) One electron of each
spin can occupy each mode.

In most theoretical studies the electrons are assumed to be phase coherent
throughout the scattering process. (See Imry, 1995 for a thorough discussion of
the precise meaning of phase coherence in this context.) In experiments there is
always a finite phase coherence time 7, that will destroy quantum interference for

sufficiently long paths. Experiments are normally designed so that the typical paths

11
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can be traversed in a time much less than 7, and the loss of interference from much
longer paths is then neglible. For a chaotic cavity this implies 75 >> 1/6. The
dephasing time increases as the electron temperature is lowered, so the practical
requirement is that the experiments be done at a sufficiently low temperature.
Landauer and Buttiker (Landauer, 1970; Buttiker, 1986) have developed a
theory that relates the conductance of a phase coherent structure to a quantum
scattering problem. The theory can be applied to structures with any number of

leads, but only the form for two leads is needed here. This form is
&2 Int[kW/ ]

G=25% 3 |l (.2)

h nm=1

where 2,,,,, is the transmission amplitude from mode m to mode n. Each 1, is an
element of the S matrix, so the conductance directly reflects the quantum scattering
properties of the structure.

The starting point for the calculations of Jalabert ef al. is the following
expression for the transmission amplitude (Baranger and Stone, 1989):

tam =~ ) [y [@ Wn (3G 3 E)Ym(3) (3.3)
lefr right

The interpretation of this expression is quite intuitive: the electron arrives at y on
the left side of the cavity in mode m, propagates inside the cavity through the Green
function G, and leaves at y' on the right side of the cavity in mode n. All of this
occurs at energy E (the Fermi energy), and v, and v, are the longitudinal (x-

direction) velocities of the modes.

3.3 Conductance Fluctuations

The quantum conductance of a ballistic cavity can be computed as described
in Baranger, Jalabert, and Stone, 1993b and references therein.: The method is
essentially a discrete version of the relation in equation (3.3). The Green function
for a spatially discrete Hamiltonian inside the cavity is found recursively and then
projected discretely onto the modes in the leads. The classical conductance can be
found by injecting a distribution of particles at one lead and following their ballistic
trajectories to obtain the transmission probability (Beenakker and van Houten, 1989
and 1990; Baranger, DiVincenzo, Jalabert, and Stone, 1991). Numerically
computed results for G(k) and G(B) are shown in Figure 3.1. The most obvious
feature is the large fluctuations (8G s ~ €2/h) in the quantum conductance over a
range of B or k where the classical conductance is completely smooth. This
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indicates the fluctuations are a quantum interference effect. In contrast to the case
of conductance fluctuations in diffusive systems, where complex structure in G(k)
and G(B) arises from the disorder of random impurities, the fluctuations of a
ballistic cavity arise from the complex classical dynamics of a relatively simple

shape with no disorder.
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Figure 3.1 Numerical results for G(k) and G(B) of an asymmetrized
stadium cavity. Straight lines are classical results, fluctuating curves are
quantum results. Adapted from Baranger, Jalabert, and Stone, 1993b (their

spinless transmission T was multiplied by 2e2/h to obtain G).

As mentioned in Chapter 2, a semiclassical analysis can reveal the link
between the complex behavior of Figure 3.1 and the underlying classical dynamics.
The analysis is based on equation (3.3) with a semiclassical approximation for G.
G is expressed as a sum over classical paths connecting the left and right leads of
the cavity (see Baranger, Jalabert, and Stone, 1993b for more details):

(] i ] -7[
G(y ,y,E)ocp(yzy),/Dpexp[;Sp(y ,y,E)—zE,up] (3.4)
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Each term in the sum has a classical amplitude D, and a phase given by the action
integral Sp along path p. 4, is the Maslov index for path p (see Giannoni ez al.,
1991). Thus the electron is treated as a classical particle with a phase that allows
for interference between different paths. The goal of the analysis is not to describe
the particular sequence of bumps that appears in G(k) or G(B), but to describe the

statistical properties of the bumps. Thus the quantities of interest are the
autocorrelation functions of the conductance, C(Ak) = (6G(B,k + Ak)56(B,k)) k

and C(AB)=(6G(B + AB,k)6G(B,k)) p» Where 6G = G —(G) is the deviation of G

from the mean. The semiclassical analysis of these quantities is described at length
in Baranger, Jalabert, and Stone, 1993b. A key assumption is that the complex
scattering inside the cavity destroys any correlation between the incoming and
outgoing angles of the classical trajectories. Classical simulations show this
assumption is justified for chaotic cavities. The results of the analysis for chaotic

cavities are:
C(0)
C(Ak) = —22 3.5
( 1+ (Ak / y)? (3.9)
C(AB) = ¢ > (3.6)
[1+ 2B/ 9g0)?]

where ¢y is the flux quantum A/e. As in Chapter 2, these quantum correlation
functions are determined by the parameters ¥ and « from the classical probability
distributions in equations (2.1) and (2.2). It is conventional to define the
characteristic scale of the fluctuations as the halfwidth of the autocorrelation
function. This convention is followed for C(Ak), giving Ak, = 7. The halfwidth
of C(AB) is V2 —1(¢pa) = 0.64¢x, but the characteristic field is usually taken
to be simply AB. = ¢px. Itis interesting to note that the halfwidth of C(AB) is
only about one tenth of the field that produces ¢ through the "typical" area
enclosed, 1/2ma. This indicates the importance of the longer trajectories in the
distribution.

For comparison with experiments, or with numerical quantum calculations,
it is more convenient to work with the Fourier Transform of C(Ak) or C(AB),
which is simply the power spectrum (Fourier Transform magnitude squared) of
G(k) or G(B).> These power spectra have the forms

5 More precisely, the identity is:

+oo T ; 1 1
Se(f) E!Jr_mde(x)e'?'nﬁ' =EwdAxC(Ax)e'2’9ch x=korB; f = or 3
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Si(f)= S, ()™ | fee 3.7
S(/) = SpO1+2n8g0f)e 2 f=— (3.8)

The frequencies can be normalized so they reflect the connection to length and area
more directly:

= _7A - 2_7[
Sp(A)=S;(0)e 2
Sp(Q) = Sp(0)(1 +270Q)e 272 Q-_-‘f_‘%

With these definitions, A is the change in electron wavelength when the wavevector
changes by Ak, and € is the area through which the flux changes by one quantum
when the field changes by AB.

The test of the semiclassical results proceeds as follows. G(k) and G(B) are
experimentally measured or numerically computed for a given cavity. Their power
spectra are computed and then fit using the form in equation (3.7) or (3.8), with
S;(0) and ¥ or Sp(0) and a as fitting parameters. This determines the quantum
values of ¥ and & for the cavity. The classical scattering is then numerically
simulated to generate P(L) and P(A), which are fit using the exponential forms in
equations (2.1) and (2.2) to determine the classical values of ¥ and « for the cavity.
The semiclassical approximation is correct to the extent that the two determinations
of ¥ and o give the same result. Jalabert, Baranger, and Stone, 1990 have done
numerical tests and found good agreement for a variety of cavity shapes and over a
wide range of the lead width W for a fixed shape. The experimental tests will be
described in Chapter 6.

The semiclassical analysis of regular cavities has also been examined by
Baranger, Jalabert, and Stone, 1993b. The assumption of uncorrelated incoming
and outgoing angles is not valid for regular cavities, and this fact has made an
analytical solution impossible to date. However, the power spectra can be
calculated numerically, and they are found to be clearly different from those of
chaotic cavities, as shown in Figure 3.2 for S;. The chaotic cavity follows the
exponential form of equation (3.7) while the regular cavity shows a much slower
falloff at high frequencies. This difference can be traced to the different classical
length distributions for the two cavities. The power spectrum of G(B) is also
different for regular and chaotic cavities, although the link to the classical area
distributions is sometimes less clear. In general, the nonexponential classical
distributions of regular cavities result in power spectra that fall off more siowly than
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those of chaotic cavities, which are always exponential (Sy) or nearly exponential
(Sg)- Distinguishing between the two types of behavior requires several decades of
sensitivity in the power spectra.

The discussion in Baranger, Jalabert, and Stone, 1993b covers the
approximations and assumptions used in the semiclassical analysis in detail. Only
the two most important limitations from an experimental viewpoint will be
discussed here. The first restriction on the analysis is that the electron cyclotron
radius must be larger than the cavity size. There is no precise cutoff, but as the
classical trajectories become more curved, the distribution P(A) becomes
asymmetric (positive directed areas become more probable than negative ones) and
the correlation function (3.6) can no longer be characterized by a single value of a.
Since the range of k even in a gated sample is limited, this effectively restricts the
study of the fluctuations to small values of B. The second major restriction is that
the number of modes, KW/, must be much greater than 1. This is not surprising
since the nature of any semiclassical approximation is to ignore the "diffraction”
effects that dominate in the limit of a single mode.

2

log{Sp(A)}
&

0 20 40 60 80
AJLgir
Figure 3.2 Power spectrum of G(k) for a chaotic cavity (bottom shape,
square points) and for a regular cavity {top shape, triangle points). Straight
line shows the expected exponential form for the chaotic cavity. Frequency
is normalized using the direct distance between the leads. kW/x = 33.
From Baranger, Jalabert, and Stone, 1993b.



3.4 Weak Localization
In addition to the fluctuations in Figure 3.1, there is also a quantum
interference effect on the average conductance, illustrated in Figure 3.3. In the

upper panel, the solid curve is G(k,B = 0) and the dashed curve is the same thing
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after smoothing, which is equivalent to an average over energy. The dotted curve is
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Figure 3.3 Numerically calculated quantum G(k) showing the effect of a

magnetic field B on the average conductance. (a) Solid line is G(k) at

B =0. Dashed line is smoothed G(k) at B = 0. Dotted line is smoothed
G(k) at B=2¢g/Asor- (b) Average G(B) over the range kW/m e [4,11].

Curve is a Lorentzian fit to the points for B < ¢pr. Adapted from Baranger,

Jalabert, and Stone, 1993b (their average change in spinless transmission
was multiplied by 2¢2/h to obtain (AG(B)) ). Error bars are approximately

the same size as point markers.
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G(k,B=2¢g / Ayy) after smoothing, where A,y is the total area of the cavity. The

presence of two flux quanta through the cavity produces a noticeable increase in the
average conductance. In the lower panel, the average conductance change
(AG(B)) = (G(k, B)— G(k,0)) «» is shown as a function of B for the same cavity.
The average effect is an increase in G by an amount of order e2/k. This behavior is
very similar to the weak localization effect found in disordered conductors where
the electron transport is diffusive. As in the diffusive regime, the effect is related to
the breaking of time-reversal symmetry by the magnetic field.

A semiclassical analysis of the weak localization has been carried out

(Baranger, Jalabert, and Stone, 1993a and 1993b). For chaotic cavities, the result
is that (AG(B)) is predicted to have the form of an inverted Lorentzian:

1+ (2B/ gg)’
The width of (AG(B)) is determined by the parameter o from the classical area

(AG(B))x[l——l—} (3.9)

distribution in equation (2.2). The lower panel of Figure 3.3 shows a fit of
equation (3.9) to the numerical points for small B. For small B the fit is very good,
but for B > 2¢cx there are deviations from equation (3.9). The behavior at
B > 2¢px depends on the shape of the cavity, but all chaotic cavities saturate or
have a large change in slope at B = ¢pcr. Thus they can be fit quite well with
equation (3.9).

The semiclassical analysis of weak localization in regular cavities does not
lead to an analytical solution because, just as for the fluctuations, the assumption of

uncorrelated incoming and outgoing angles is not valid. Numerical calculations for
(AG(B)) in two polygonal cavities are shown in Figure 3.4. (AG) is generally

linear in B from very near B = 0 to well beyond B = ¢pot. Baranger, Jalabert, and
Stone, 1993b, discuss how this linear behavior appears to arise from flux
cancellation in polygonal cavities with parallel sides. These authors have also
found more general arguments for the existence of linear weak localization in any
cavity with a power law distribution of areas (A.D. Stone, private communication,
1994). Thus the general prediction is that weak localization in regular cavities is
linear well beyond B = ¢y, in contrast to the Lorentzian shape with halfwidth
$o0/2 found for chaotic cavities. This prediction will be compared with
experimental results in Chapter 6.

The limitations on the semiclassical analysis mentioned at the end of the
previous section also apply to the weak localization results.
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Figure 3.4 Weak localization for two regular cavities: Half-asymmetric
polygon (squares) and Full-asymmetric polygon (diamonds). From
Baranger, Jalabert, and Stone, 1993b (their average change in spinless

transmission was multiplied by 2e2/h to obtain (AG(B)) ). Error bars are
approximately the same size as point markers.

3.5 Random Matrix Theory Analysis

In addition to the "microscopic” approaches of exact quantum calculation or
semiclassical approximation, conductance fluctuations and weak localization can
also be studied using the "macroscopic" approach of random matrix theory. This
was done for the case of diffusive transport (see Stone ez al., 1991 for a review)
and it has also been done very recently for ballistic transport in chaotic cavities
(Baranger and Mello, 1994a). Baranger and Mello considered chaotic cavities with
no direct paths between the leads, for which they could assume S'is described by
the "circular ensembles” of random matrix theory. (S is a member of the Circular
Orthogonal Ensemble for B = 0, and a member of the Circular Unitary Ensemble
when B is large enough to break time reversal symmetry.) They derived the size of
the (ensemble average) weak localization effect and the variance of the fluctuations
in G(k) or G(B) for any number of modes in the leads. Their results for the limit
kW/r — oo are summarized in Table 3.1.6 Baranger and Mello compared these

6 The published results for spinless particles were multiplied by 2 in the case of
weak localization and by 4 in the case of the variance of the fluctuations to account
for spin.
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predictions with numerical results for a typical chaotic cavity and found good
agreement. This work showed that the effects are "universal"” in the sense that they
do not depend on the details of the cavity shape or size or on k as long as

kW/m>> 1. Regular scattering cavities are not necessarily expected to show the

same universal behavior.
Weak Localization Conductance Fluctuation
Amplitude RMS Amplitude

2 2

B=0 1e” 1e

2k N2k

1 e2
B2 ¢oc 0 37

Table 3.1 Random matrix theory predictions for quantum interference effects in
chaotic cavities in the limit kW/7T — eo.

Very recently, the effects of a finite 7y have been included in the random
matrix theory analysis by Baranger and Mello, 1994b. They have derived
predictions for the size of the WL and the conductance fluctuations in cavities with
any kW/x and any number Ny of effective channels for "escape” through phase
breaking. The result most relevant for the experiments discussed here is that the
"universal” predictions shown in Table 3.1 are only valid when Ny << kW/z. In
other words, if the electrons typically escape through the geometrical leads before
being "lost" to phase breaking, then the size of the quantum interference effects is
unaffected. Experiments designed to test the predictions in the regime of
Ny 2 kW/r have recently been reported (Clarke et al., 1994).

3.6 Experimental Requirements

Based on the theoretical work described in the previous sections, the desired
characteristics of an experimental system for the study of chaotic scattering can now
be listed.

¢ It must be possible to make cavities of a variety of shapes and sizes.
These cavities should come as close as possible to the ideal of scattering
only from the boundaries, and the boundaries should be as free of disorder
as possible.



21

* It must be possible to vary the magnetic field and/or the Fermi
wavevector of the electrons without affecting the cavity shape.

* The cavities should be studied in the semiclassical regime of large
kW/r, and at small B where the electron trajectories are approximately
straight.

* The cavities must be cooled to a temperature low enough that the
electrons remain phase coherent over the length of the typical trajectories
involved.

The following two chapters describe the fabrication of samples and the construction
of a low temperature measurement system designed to satisfy these criteria.
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FABRICATION OF BALLISTIC CAVITIES
FROM GaAs/AlGaAs HETEROSTRUCTURES

4.1 Basic Properties of the Heterostructure

A cross-sectional view of a typical high mobility GaAs/AlxGaj.xAs
heterostructure is shown in Figure 4.1. The highest quality heterostructures are
~ grown by molecular beam epitaxy (MBE) in ultrahigh vacuum charhbers, starting
from a substrate wafer of semi-insulating GaAs. A thick layer of undoped GaAs is
grown first, followed by a "spacer layer"” of undoped AlGaAs, then a layer of
AlGaAs doped with Si, and finally a thin cap layer of GaAs to protect the reactive
AlGaAs layers. The Al fraction is typically near x = 0.30.

100-200A  NID GaAs

~500A  n-type Al,Gaj_xAs (= 1-3 x 1018 Sifcm3)

100400 A  NID Al,Gaj_,As

1.0pum  NID GaAs

Semi-insulating GaAs substrate

Figure 4.1 Typical layer structure of a high mobility GaAs/AlyGaj.xAs
heterostructure. NID layers are not intentionally doped.

22
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The reason for creating such a structure can be seen by examining the
energy bands shown in Figure 4.2. The discontinuity in the conduction band at the
GaAs/AlGaAs interface creates a narrow potential well with discrete energy states
that define the bottoms of 2D subbands. The n-type dopants in the AlGaAs provide
electrons which fill up these subbands. With the appropriate doping level and
spacer layer thickness, the lowest subband alone can be populated, as shown by the
Fermi level in the figure. Thus a properly designed heterostructure supports a
strictly two-dimensional electron gas (2DEG), with all electrons having the same z
wavefunction and being free to move paralle] to the surface of the wafer.

— 7
_L_)T'

Doped AlGaAs

Undoped AlGaAs spacer

Figure 4.2 Energy bands of a typical GaAs/AlGaAs heterostructure.
Donors are indicated by + (ionized) or ® (un-ionized) Horizontal lines in

the triangular well at right are the discrete states which define the bottoms of
the 2D subbands.

The truly 2D nature of the electron gas itself already makes this system
significantly different from a thin metal film. However, the primary reason for the
great interest in GaAs/AlGaAs for electron transport studies is the fact that defect
scattering of electrons travelling in the 2D layer can be extremely weak. This is the
result of the undoped AlGaAs spacer layer that separates the disordered region of
ionized donors from the 2DEG. The electron mean free path inferred from
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conductivity measurements can be 10 pm for material grown in a good MBE
chamber, and values in excess of 100 pm have been realized at a few exceptional
facilities.” Since it is fairly easy to confine the 2DEG to size scales of a few pm,
the regime of electron transport on length scales shorter than the mean free path can
easily be reached. However, the mean free path, which measures the distance over
which electrons lose their initial forward momentum, does not tell the whole story.
The potential energy variations seen by the 2DEG are shallow and rapid, resulting
in many small-angle scattering events (typically 10 degrees per event) on a length
scale smaller than the mean free path. The smaller scattering length over which
electrons remain in exactly the same momentum state can be measured using the
Shubnikov-de Haas effect, and it is typically found to be less than 1/10th of the
mean free path (see Coleridge, 1991). When small-angle scattering is taken into
account, it is clear that studies of electron transport with negligible defect scattering
require structures of total size near 1 pum. This makes the fabrication more
challenging.

For chaotic scattering studies it is also important to be able to change the
electron density of the 2DEG. This can be done conveniently by placing a metal
gate on top of the GaAs cap layer and applying a voltage between the gate and the
2DEG. At room temperature the charge on the gate is compensated by the large
density of surface states and the gate does not affect the 2DEG. At temperatures
below about 100 K, the surface states and the un-ionized donors in the AlGaAs are
frozen in place and the 2DEG density can be increased or decreased using the gate.

The heterostructures used in this work were obtained from two MBE
growers. Dr. Bob Sacks, formerly of United Technologies Research Center in East
Hartford, CT and now at Ohio State University, grew one of the wafers used in this
work. Ms. Haddas Shtrikman of the Weizmann Institute of Science in Rehovot,
Israel grew the other one. Detailed descriptions of these heterostructures and their
bulk transport properties are given in Appendix A.

4.2 Large Scale Fabrication
In order to measure a micron-sized cavity it must be connected to the
macroscopic world of electronic instruments. This requires several intermediate

7 When the spacer exceeds a certain thickness, the defect scattering is limited by
unintentional impurities in the GaAs, rather than by the donors. Thus the scattering
strength depends on the cleanliness of the MBE chamber, and the best results are
achieved only after many months of continuous operation at ultrahigh vacuum.
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structures to make the transition from the coaxial connectors on the instruments at
room temperature to the submicron leads that inject electrons into the cavity at a
temperature of order 0.1 K. The connections from the instruments to the header
that holds the GaAs chip will be discussed in Chapter 5. The fabrication of the
cavities themselves is discussed in Section 4.3. The large structures on the sample
chip and the wire bonding process are described in this section.

The layout of the large scale structures is shown in Figures 4.3 and 4.4.
The GaAs wafer was diced into 3.5 mm by 3.5 mm chips. The 2DEG was etched
away everywhere except inside a 100 pm by 100 um "mesa" at the center of the
chip. Ohmic contacts were placed along the edges of the mesa, overlapping small
tabs of mesa that protruded from the central square. The ohmic contacts were then
. connected by metal film leads to 300 pm by 300 wm pads to which wire bonds
could be attached. Alignment marks for electron beam lith