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Abstract

Optical/UV Single-Photon Spectrometers using
Superconducting Tunnel Junctions

Christopher Mogan Wilson, Jr.
Yale University
2002

We report progress on the ongoing development of optical /UV single-photon,
spectrometers using superconducting tunnel junctions. Our devices utilize a
lateral trapping geometry. Photons are absorbed in a Ta thin film, creating
excess quasiparticles. Quasiparticles diffuse and are trapped by Al/AlOx/Al
tunnel junctions located on the sides of the absorber. The Ta/Al interface does
not overlap the junction area. Devices designed for imaging have tunnel
junctions on two opposite sides of the absorber. Position information is obtained
from the fraction of the total charge collected by each junction. Using devices
designed for large backtunneling gain, we have measured an energy resolution
of 0.4 eV at 4.89 eV. The resolution in these devices is limited by thermodynamic
fluctuations of the thermal quasiparticle number in the Al trapping layers. We
predict that this previously unconsidered noise source should be important in
any backtunneling device with "deep" traps. We also report preliminary
measurements of a second generation of detectors designed to eliminate this
noise and, consequently, backtunneling gain. These devices need small
junctions, of order 1 um?, for best noise performance. With currently available
amplifiers, the resolution of these devices should approach the intrinsic limits of
creation and trapping statistics, and exceed the resolution of devices with
backtunneling.
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Symbols and Abbreviations

Vectors and matrices indicated by bold characters in the text.

a, constants

Y average photon number

r rate constant

A superconducting energy gap

€ average energy required to break a Cooper pair
€p Fermi energy

®d(u) correlation function

A photon wavelength

® angular frequency

o’ variance

T time constant

AC alternating current (signal frequency)
A tunnel junction area

Al aluminum

a occupation vector

B second order Fokker-Planck moments
BNC bayonet N-connector

C capacitance

CCD charge coupled device

D(e;) two-spin density of states at the Fermi energy
DC direct current (low frequency)

E energy

E, phonon energy

E, photon energy

e- electron’s charge

ESA European Space Administration

eV electron volt

e? voltage-noise power spectral density
f fraction

f frequency

FET field-effect transistor

FFT fast Fourier transform

F Farad

F Fano factor

F effective Fano factor

F, phonon trapping factor

G(w) cross-power spectra matrix

g(IN) generation parameter

*He isotope of helium with atomic mass of 3



isotope helium with atomic mass of 4
Hertz

current

current-noise power spectral density
counting variables

Kelvin

Boltzmann'’s constant

absorber length

pixel size

linearized transition matrix
occupation number

steady-state occupation number
variation of occupation number
transition shot size

number of photon-excited quasiparticles
niobium

neutral density

oxygen

order of magnitude

probability function

two-level transition probability
photomultiplier tube

charge signal created by photon
effective charge

multilevel transition probability
resistance

normal-state resistance of a tunnel junction
responsivity

recombination constant

effective recombination constant
recombination parameter

silicon

superconducting tunnel junction detector
power spectral density

entropy

matrix of entropy second derivatives
temperature

tantalum

transition-edge sensor detector
ultraviolet

voltage

volume

intrinsic thermodynamic variable
impedance
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Chapter 1: Introduction

1.1 Motivation

Optical and ultraviolet (UV) photon detectors based on semiconductor
technologies have advanced significantly in recent years. Various types of
detectors can provide spectroscopy, imaging, single-photon sensitivity, photon
timing or high quantum efficiency. However, no single semiconductor detector
can provide all of these things. While many applications only need a detector
with one or two of the above characteristics, the next generation of applications
in many fields will demand detectors that combine many of them. No
semiconductor technology promises to combine all of these characteristics ina
single detector. However, a new class of cryogenic detectors based on
superconducting technology does promise such “all-in-one” detectors [Peacock
1996], [Cabrera 1998].

This dissertation presents research into one type of cryogenic detector, the
superconducting tunnel junction (ST]) detector. The basic operating principle is
similar to many semiconductor detectors: an incident photon deposits energy in
the detector that excites carriers which then produce a measurable electrical
signal. The major difference between a semiconductor and superconducting
detector is the minimum amount of energy required to produce a single
excitation, often called the energy gap. In most semiconductors, the energy gap
is of order 1 eV. In conventional superconductors, the energy gap is of order 1
meV. This implies that the same amount of energy absorbed in a superconductor
will produce approximately 1000 times the number of excitation asin a
semiconductor! This fact leads to a number of practical advantages. In
particular, it means that the energy resolution of ST] detectors can greatly exceed
that of semiconductor detectors. Typically, the resolving power of a detector

based on carrier excitation is proportional to the square root of the average



number of excitations created. (The resolving power, R, is the energy of the
absorbed photon divided by the uncertainty in the detected energy.) For
example, photons in the optical range have an energy between about 1.8 eV and
3 eV. Thus, an optical photon will produce about 1 excitation in a semiconductor
regardless of the energy of the photon. Therefore, the relative uncertainty in the
energy is large, of order the energy of the photon itself. On the other hand, the
same photon will produce thousands of excitations in an ST], and we will be able
to distinguish photons of different energies.

STJ detectors are not the only class of superconducting spectrometers.
Microcalorimeters are a broad class of detectors based on detecting the increase
in temperature of a small absorber caused by the absorption of a single photon.
The increase in the absorber’s temperature can be measured in a number of the
ways, but in the optical/UV energy range, a transition edge sensor (TES) is used.
A TES is a strip of superconducting metal held in its superconducting transition
by electrothermal feedback. In the transition region, the resistance of the TES is a
strong function of temperature, making the TES a very sensitive thermometer.

Intrinsic energy resolution across the optical/UV spectrum is the main
motivation for developing superconducting detectors. A number of applications
in astronomy and biology could benefit from a optical/UV detector that
combines energy resolution with other characteristics. One example from
astronomy would be the mapping of the universe in three dimensions (3D).
When a semiconductor detector, such as a charge coupled device (CCD), is
exposed to the sky it produces a 2D image. In general, the image contains no
independent information about how far away any object in the image is. If an
imaging array of STJ detectors were exposed to the same part of the sky, it would
not only record the image, but also an energy spectrum from each object. This
energy spectrum can be used to determine the red shift of each object [de Bruijne
2002], from which its distance from Earth can be inferred according to Hubble’s
Law. The astronomical image produced by the STJ is therefore a real 3D image of

the sky. The same information could be achieved by exposing the CCD many



times with different color filters, but this is not always practical. If the objects
being recorded are very faint, many exposure may require an unworkable
amount of observation time. For example, the famous Hubble Deep Field image
[Williams 1996] was produced by exposing its CCD three times with different
color filters (enough resolution to print the image in color). With each exposure
requiring an entire observation, extracting more spectra would have been too
expensive. An ST] camera, on the other hand, could produce the equivalent of
20-50 CCD exposures in a single observation.

Other astronomical applications include recording time-resolved spectra
of variable sources. Compact sources that vary rapidly in time, such as pulsars
and cataclysmic binaries, have recently begun to be studied with cryogenic
detectors[Verhoeve 2002], [Cabrera 2002]. For the first time, cryogenic detectors
have recorded time-resolved, broad-band spectra of these objects, providing new
information on their structure and dynamics. The introduction of
superconducting detectors with this ability is opening new areas of exploration
for this broad class of astronomical sources.

There are also a host of potential applications of cryogenic detectors in the
fields of single molecule physics and biology. In many of these applications,
fluorescent molecules are introduced into a system as probes. These probes often
have absorption and emission spectra that change in response to environmental
properties such as pH or the presence of certain ions. Many experiments done
now are essential static experiments or they look at changes only on second or
minute time scales. However, many physical time scales in the systems are much
faster. Processes such as diffusion of molecules or binding and unbinding can
take place on time scales of order 1 us or less. Any information related to these
fast dynamics is lost to conventional detectors. ST]J detectors promise to resolve
spectra on these short time scales, providing a wealth of new information about

the systems and the physics of the probes themselves.



1.2 Operating Principle

The basic element of an ST]J detector is the superconducting tunnel
junction, comprised of two superconducting electrodes separated by a very thin
insulting barrier. In our detectors, the electrodes are made from aluminum (Al)
and the insulating layer is native Al-oxide (ALQ,). By applyinga magnetic field
in the plane of the barrier, we can suppress the critical current of the junction to
nearly zero. (The critical current is the maximum Cooper pair current that can
flow before a finite voltage develops across the barrier.) We can then bias the
junction at a finite voltage. At zero temperature, all electrons in the system
would be condensed as Cooper pairs and there would be no current in the
subgap region, i.e., for bias voltages less then the gap voltage of 2A/e- (where A
is the superconducting energy gap of the electrodes and e- is the electron’s
charge). When a single photon is absorbed in one of the electrodes it breaks
Cooper pairs, creating excess quasiparticles. These quasiparticles can then tunnel
across the barrier, producing a pulse of excess subgap current. We measure this
pulse and then integrate it to obtain the total tunneled charge, which tells us how
many excess quasiparticles were created. The average number of quasiparticles
created, N, and therefore the charge collected at high bias voltage, Q, is related
to energy of the incident photon, E,, by the relation
EY

_9_
N’_-eT— £

(1.1)

where ¢ is the average energy required to create a single quasiparticle. Monte
Carlo simulations of the absorption process predict that € = 1.7A [Rando 1992].
The constant ¢ is larger than A because some of the photon’s energy escapes the
electrodes as phonons with an energy too small to break Cooper pairs.

If we repeat the energy measurement on many photons of identical
energy, we will find a distribution of collected charges. The full width at half

maximum (FWHM) of this distribution determines the resolution of our energy



measurement. Many things can contribute to the width of the distribution, but
the width is fundamentally limited by the processes that create quasiparticles
after the absorption of the incident photon. These processes, such as phonon
emission by energetic quasiparticles, are all random. This leads to an intrinsic
variation in the number of quasiparticles created. The minimum energy

resolution dictated by this variation is

AN
AE;y,=E,—~*= 2.355,[F¢E, (1.2)

Fano
Y

where F is the Fano factor and the factor of 2.355 converts from one standard
deviation of noise to FWHM. This intrinsic limit is often called the Fano limit.
The Fano factor accounts for correlations in the creation processes and is
calculated to be F = 0.2 [Kurakado 1982].

We fabricate the electrodes of our junctions from Al because Al-oxide
naturally forms a very high quality tunnel barrier. However, Al is a poor photon
absorber: in the optical/UV range it is highly reflective and in the X-ray range it
has a small absorption cross section. Also, we typically want the volume of the
ST] electrodes to be small so that quasiparticles tunnel quickly before they are
lost. On the other hand, we want the detector itself to have a large volume, so
that it collects more photons. Our solution to these engineering conflicts is to use
an absorber that is distinct from the tunnel junction, but in good metallic contact
with it. We make absorbers from tantalum (Ta) which has a large absorption
cross section in both the optical/UV [Verhoeve 1997] and X-ray range [Henke
1993]. Using a Ta absorber also solves the volume “problem” through a process
known as quasiparticle trapping. The energy gap of Tais A;, = 700 peV, about
four times larger than the energy gap of Al, A, = 180 ueV. This means that the
minimum energy (above the Fermi energy) at which a quasiparticle can exist in
the Al is much less than the minimum energy in Ta. Thus, when excess
quasiparticles are created in the Ta absorber, they can diffuse freely until they
enter the Al electrode. When they enter the Al, they are at a relatively high
energy and they typically scatter inelastically very quickly, emitting phonons and
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Figure 1.1 Schematic of an imaging STJ detector (upper) and a energy band diagram showing
one side of the device (lower). Not shown is an insulating SiO layer between the trap and
wiring, which has a via (hole) for contact between the two layers. The T a plugs interupting the
Al wiring are omitted for devices designed without backtunneling. Physical processes illus-
trated in the band diagram are: 1) quasiparticle creation, 2) diffusion, 3) trapping and 4) tunnel-
ing.

losing energy until they approach A, (see Fig. 1.1). Once the quasiparticles have
scattered to an energy less than A_, they cannot diffuse back into the Ta absorber
because there are no allowed states. Once the quasiparticles are “trappedO in the
Al electrode (which we call the trap) they can tunnel across the barrier in a
relatively short time (a few microseconds) compared to the loss time (a few
hundred microseconds). This process of quasiparticle trapping allows us to
make an STJ detector with a large absorber, good for photon collection, coupled
to a small tunnel junction, good for fast, efficient quasiparticle readout.



Taking advantage of quasiparticle trapping, we can also make imaging ST]
detectors based on charge division. To make a detector with one dimensional
imaging, we start with a single Ta strip. We contact two opposite sides of the
absorber with a pair of tunnel junctions (Fig 1.1). When a photon is absorbed in
the strip, the created quasiparticles diffuse until they reach the two Al traps. The
quasiparticles scatter down in each trap. They then tunnel and produce an
excess current in each junction, allowing us to collect two charges, Q, and Q,.
The sum of the charges is again Q, which is proportional to the photon energy.
In addition, the ratio of the charges tells us where the photon landed along the
absorber. If the photon lands in the middle of the absorber, the charge divides
equally between the two junctions on average. If the photon lands close to one
junction, almost all of the charge will be trapped in the nearby junction and very
little will be collected by the far junction. In an ideal detector, the charge
collected in each junction varies linearly with the absorption location [Krauss
1989].

The division of the charge between the two junctions is a statistical
process, with each quasiparticle following a random walk. Thus, repeated
measurements will produce a distribution of absorption locations, even if all the
photons land in exactly the same place. The width of the distribution, AL,
defines the spatial resolution of our detector. Besides the statistics of diffusion,
AL can also be increased by additive noise in the tunnel junction and the
electronic readout. If we interpret AL as the effective pixel size of the detector, we

can then define the number of pixels as:

L
pixels = AL
where L is the length of the absorber. In general, N, will be of the same order

N (1.3)

as the energy resolving power, R.

There is an intrinsic process in superconducting tunnel junctions, known
as backtunneling, that we can exploit to give the junction charge gain. We do this
by adding a Ta “plug” interrupting the wiring on the counter electrode side of



Figure 1.2 Energy band diagram of one junction of a backtunneling device in a modified excita-
tion representation. Quasiparticles are shown as gray circles, suggesting their mixed electron-
hole character. Tunneling is shown as diagonal transitions across the barrier, indicating that
quasiparticles gain (lose) energy as they are accelerated (decelerated) by the bias voltage. Elec-
tron tunneling is indicated by black arrows. Hole tunneling is indicated by white arrows. Quasi-
particles are confined in both Al electrodes by high gap Ta. At high bias voltage, only electron
tunnel is allowed from left to right and only hole tunneling is allowed from right to left. This
hole process is known as backtunneling. The two processes allow a single quasiparticles to
circulate, tunneling multiple times. This gives the junction charge gain because both processes
transfer a charge in the same direction.

the barrier (refer to Fig. 1.1). Fig. 1.2is energy band diagram of one junctionin a
modified excitation representation. We see that the high gaps of the Ta absorber
and plug confine excited quasiparticles near the tunnel barrier. Each
quasiparticle is a coherent superposition of electron and hole, but it must tunnel
as either a pure electron or pure hole. At sufficiently high bias voltages, a
quasiparticle can only tunnel from left to right as an electron, gaining energy eV.
A quasiparticle cannot tunnel from left to right as a hole, because it would lose
energy eV and tunnel into the gap on the right side. After tunneling to the
counter electrode, the quasiparticle can only backtunnel from right to left as a
hole. Keeping both processes in mind, we see that a confined quasiparticle can
circulate, first tunneling and then backtunneling. This cycle continues until the
quasiparticle is lost to recombination. Because both tunneling and
backtunneling transfer a charge in the same direction, this effect gives the

junction a charge gain, p, equal to the average number of times a quasiparticle



tunnels. Thus, we measure an integrated charge many times greater than the
number of quasiparticles initially created.

Backtunneling gives the junction charge, but it also adds noise. Both
tunneling and backtunneling are random processes, S0 the number of times
different quasiparticles tunnel randomly varies. Thus, the gain associated with
backtunneling varies from photon to photon, broadening the resolution. For a
symmetric tunnel junction, the energy width due to backtunneling is

AE,. ., =2.355 /i 1+ 1 I;Er (1.4)
p

where p is average number of times a quasiparticle tunnels [Goldie 1994]. This
noise is minimized in the limit of a large gain. Still, even in the best case it

contributes a width more than a factor of 2 greater than the Fano limit.

1.3 Previous and Concurrent Work

As we can see, there are a number of physical processes involved in the
operation of an ST] detector. In this introduction, we have discussed the
idealized aspects of these processes. The rest of this dissertation is largely
concerned with answering the question, “How close does a real ST] come to this
ideal behavior?” Many aspects of this question have been answered in previous
work, much of it done by prior students here at Yale. The present work on ST]
detectors for optical/UV application grew out of work to develop STJ detectors
for X-ray astronomy.

Michael Gaidis [Gaidis 1994] began the work at Yale. He developed the
geometry and basic theory of operation. He developed the successful fabrication
process, including basic material science, that we use today. In fact, actual
devices made by Gaidis were tested repeatedly through 1999 and they still
worked when we stopped testing them. Gaidis made the first successful

measurements of single junction ST] detectors at Yale. His thesis reports an



energy resolution of 190 eV FWHM for 6 keV X-rays. (We can useasa bench
mark for energy resolution 160 eV at 6 keV achieved by a standard high-
performance, commerial semiconductor detector, the Amptek XR-100CR.)
Stephan Friedrich continued the development of X-ray detectors [Friedrich
1997a]. He made the first measurements of double junction imaging detectors.
He also developed the active voltage bias amplifier that we still use. His work
improved the energy resolution of the detectors to 54 eV at 6 keV. The improved
electronic readout developed by Friedrich opened the door to understanding
much of the underlying physics of the devices. Kenneth Segall continued the
work on X-ray detectors. Most of his work was done on the same physical
devices as Friedrich, but further refinements of the electronics and measurement
setup improved the energy resolution to 26 eV at 6 keV. He also developed a
detailed microscopic model of the detectors, including extensive computer
simulations. He used those models to complete much of our physical
understanding of the device operation. In particular, he concluded that non-
equilibrium processes in the detectors were limiting the energy resolution. With
this understanding, he was able to quantitatively explain the energy resolution of
the detectors and make predictions about how design changes could improve the
resolution.

The development of optical/UV detectors started concurrent with Segall’s
work. The basic operational principle is the same as in the X-ray energy range.
We modified and scaled device designs appropriately for lower incident energy.
We developed an optical test system and fabricated new devices. We used the
same basic electronics for the optical/ UV measurements, although we improved
the noise performance. We have also put much work into improving the
repeatability and efficiency of the measurements system by refining the
grounding and shielding of the system and the basic measurement protocol.

Development of X-ray detectors has also continued here at Yale. This
work has been carried out by Liqun Li, Luigi Frunzio and the author. Recently

fabricated X-ray devices have achieved an energy resolution of 13 eV at 6 keV, as
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good as any STJ detector in the world [Li ‘2001]. A next generation of devices
have been designed and fabricated based on the predictions of Segall. Tests of
these latest devices are ongoing.

Two other groups have made successful optical/UV single photon
spectrometers. A group at the European Space Administration (ESA) produced
the first results with any type of cryogenic detector [Peacock 1996]. They use
STJs with a vertical geometry, meaning that the Ta layers and the Al junction
electrodes are stacked on top of each other. (By contrast, we refer to our device
geometry as a lateral geometry.) In the laboratory, they have measured an energy
resolution of 0.25 eV at 5 eV [Verhoeve 1997] for a fiber-coupled ST]. In addition,
they have also made several measurements using a lens-coupled 36 pixel array of
STJs at the Walter-Hershel Telescope in the Canary islands [Verhoeve 2002]. The
resolution of the lens coupled array is significantly degraded by the flux of
infrared photons from the warm lenses. A group at Stanford University has also
made optical/ UV spectrometers based on TESs. In the laboratory, they have
achieved an energy resolution of 0.15 eV at 5 eV for a fiber-coupled TES [Cabrera
1998]. They have also made astronomical measurements using a fiber-coupled

TES [Cabrera 2002].
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Chapter 2: Experimental Apparatus and Conditions

2.1 Device Fabrication

All of the devices discussed in this thesis were fabricated in the Yale
Microelectronics Fabrication Center. Devices are fabricated in a six layer process
in a high vacuum chamber with a typical base pressure of 1.5 x 107 Torr. The
chamber is pumped by a pair of 8”cryopumps. We start with a thermally
oxidized 2" silicon wafer. The wafer is cleaned and then baked overnight in the
vacuum chamber using a quartz lamp at a temperature of 350° C. The first
deposition is the Ta layer. Immediately before deposition, the bare wafer is
cleaned with an in-situ ion-beam gun to help ensure good film adhesion. The Ta
is dc-sputtered at 960 W with an argon pressure of 6 mTorr . During the
deposition the substrate is heated to 750° C with the quartz lamp. The Ta must be
deposited hot so that it nucleates in the desired crystal phase [Face 1987]. The
typical Ta thickness is 600 nm. For device runs OPS-F99 and OPS-EQ0, we
sputtered titanium (Ti) into the vacuum chamber for approximately 30 minutes
before the Ta deposition to reduce the background pressure. The typical pressure
after sputtering Ti was 8 x 10® Torr. The Ta film is patterned using a positive
photoresist process and wet chemical etching.

The second layer is the Nb contact. The Nb is patterned using a lift-off
process, so an invertible photoresist is spun over the patterned Ta. The resist is
patterned with a negative image and then the wafer is inserted into the vacuum
chamber. Immediately before depositing the Nb, the Ta is cleaned with the ion-
beam gun through the photoresist mask. This ion-beam cleaning removes any
Ta-oxide or other contamination from the exposed Ta ensuring a good metallic
interface between the Ta and Nb. The Nb is dc-sputtered at 330 W with an argon
pressure of 11 mTorr. The typical film thickness is 200 nm. The wafer is then

removed from the vacuum chamber and the film is lifted off in acetone.
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The next deposition step is the Al trilayer. The wafer with the patterned
Ta and Nb layers is cleaned and inserted into the vacuum chamber. For samples
OPS-F99 and OPS-E00, we again sputtered Ti to lower the base pressure. While
the Al evaporation source is preheated, the sample is ion-beam cleaned, again to
ensure a good metal-metal interface between the Ta and Al trap. This is by far
the most important interface. The Al trap layer is thermally evaporated at the
high rate of about 20 nm/s. We evaporate at a high rate to reduce the exposure
of the film to background gas and to promote the nucleation of large Al grains.
The typical trap film thickness is 200 nm. The Al is evaporated from a pair of
tungsten coils wrapped with Al wire. The parallel coils form an extended source
that helps ensure a uniform deposition across the wafer despite the short
working distance needed to achieve such a high deposition rate. After the
deposition, we allow the sample to cool for a few minutes before isolating the
chamber from the cryopumps and filling it with ultra-high purity oxygen gas to a
pressure of 500 mTorr. We allow the Al film to oxidize for 120 minutes. At this
point, we remove the oxygen by directly opening the cryopump valves. We then
thermally evaporate the counter electrode Al film at a rate of 2 nm/s. We use a
much lower deposition rate for the counter electrode film to avoid damaging the
Al-oxide barrier. The typical counter electrode thickness is 75 nm.

The Al/Al-oxide/ Al trilayer is patterned in a two-step, wet-etch process.
First, we pattern positive photoresist in the shape of the trap layer and the entire
trilayer is chemically etched in this shape. We then clean off the photoresist, and
pattern a new layer of positive photoresist in the shape of the counter electrode,
which is given a 2 um separation from the edge of the trap. We thendoa timed
etch to define the counter electrode without etching the trap layer any further.

The next layer is an insulating layer with a via (a hole) that allows for
contact to the counter electrode. We use SiO as an insulator and pattern it using
a lift-off process. To do this, we spin invertible resist over the sample and pattern
it. We place the wafer in the vacuum chamber and thermally evaporate Si0 at a

rate of 2 nm/s. The typical thickness is 250-300 nm, enough to ensure step
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coverage over the entire trilayer. The sample is removed and the SiO is lifted off
in acetone, leaving the via through the insulator to the counter electrode. The
insulating layer does not cover the absorber in the optical/UV devices.

The final step is to deposit Al wiring. The Al wiring includes macroscopic
pads for Pogo Pin contact to the samples and it contacts both the Nb ground lead
and Al counter electrode. We spin invertible resist over the wafer and pattern it.
The wafer is inserted into the vacuum chamber. The sample is ion-beam cleaned
and Al is thermally evaporated at a rate of 2 nm/s. The total thickness is
typically 250-300 nm, enough to ensure step coverage of the insulator. The
sample is removed and the Al wiring is lifted off. At this point, the process is

complete and the wafer is diced into individual samples.

2.2 Cryogenics

Our devices are tested in a custom-made, two-stage *He dewar. The
dewar is comprised of a vacuum container, many layers of NASA super
insulation, a liquid N, tank and shield, a liquid *He tank and shield, and two
closed cycle *He pots. The stages are nested, with the ‘He stage inside the N,
stage, and the two *He pots inside the ‘He stage. The second *He stage is not
inside the first *He stage, but all supports and pumping lines for the second stage
go through the first 3He stage. The gaseous *He is stored in an attached tank at
room temperature. Each *He pot has an individual charcoal pump contained
inside the ‘He stage. The dewar is relatively compact compared to standard top-
loading dewars. To gain access to the sample stage, the dewar is inverted onto a
stand. The vacuum container, super insulation, N, shield and ‘He shield are
removed in sequence. The sample space is large and has a copper cold finger
that extends from the second *He pot.

The minimum time to reach the base temperature of 210 mK from room
temperature is about 8 hours, although we usually run the cooling procedure

overnight. We start by pumping out the vacuum container using a diffusion
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pump with a liquid N, cold trap. After pumping the dewar, we fill both the N,
and *He tanks with liquid N, to pre-cool the dewar. The maximum pressure
allowed before starting to pre-cool the dewar is 2 x 10~ Torr. At this point, we
usually let the dewar pre-cool overnight while continuing to pump, although the
cooling process only takes about 2 hours. In the morning, we valve off the
vacuum container once the pressure drops below the maximum allowed value of
2x 10° Torr. At this point, we remove the liquid N, from the ‘He tank and we
transfer liquid *He into the tank. The tank holds approximately five liters of ‘He.
After allowing the *He stage to cool to 4 K, we top off the liquid *He and begin to
pump on the bath. The entire bath is pumped using a Roots blower backed by a
rotary pump. The maximum pumping speed of the Roots blower is 300 liters/s.
The Roots blower is left on for the rest of the cryogenic run. Once the ‘He bath
reaches its base temperature of 1.5 K, we begin condensing *He into the two pots
by opening valves connecting the room temperature *He cylinder to the pots.
After condensing for about an hour, we begin pumping on both *He pots by
opening thermal switches connecting the pots to the *He bath and closing
switches connecting the two charcoal pumps. After about two hours of pumping
on the *He pots, the first pot reaches a temperature of 0.3 K and the second pot
reaches the base temperature of 0.21 K. Often we refer to the two pots as the

0.3 K and 0.2 K stages. The *He bath typically limits the hold time of the dewar.
The ‘He bath typically lasts for twelve hours after topping it off, which implies 8-

9 hours of experimental time at base temperature.

2.3 Optics and Light Sources

We have developed an optical system for testing the devices. We start
with two different light sources at room temperature. One light source is a
mercury arc lamp, designed for calibrating spectrometers. The lamp’s output
spectrum contains a number of narrow spectral lines corresponding to the atomic

transitions of the mercury vapor. The lines span the entire optical energy range
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and extend into the UV. The lamp has a total output of less than 5 mW, spread
across the various lines. We use this lamp to provide single photons at varying
energies. The second light source is a pulsed N, laser. It emits extremely bright
pulses of UV light (A = 337 nm, E = 3.68 eV), lasting about 4 ns. This source can
simulate high energy photons by illuminating the device with multiple UV
photons that are absorbed on a timescale short compared to the device readout.
Both of these light sources are fiber coupled. We can only use one source ata
time, although it is straightforward to switch between the two.

The light from each source is collected by a fiber-optic patchcord and
brought to a small optical bench. We use fused silica fibers that transmit light of
wavelength down to 200 nm. At the entrance of the optical bench, the end of the
fiber is placed at the focus of a miniature collimating lens that launches the light
radiating from the fiber onto the optical bench. The optical bench has two types
of filters. Metallic neutral density (ND) filters are the first type. These filters
attenuate light uniformly across a broad spectrum, specifically from 200 nm -
2000 nm. We use them to adjust the intensity of the light that reaches the devices.
The filters are made of fused silica, so that they transmit UV light, and they
attenuate the light using varying thicknesses of a reflective metallic coating. The
filters are characterized by a neutral density value, ND, which is the logarithm
(base 10) of the attenuation. We have twelve ND filters placed in two filter
wheels. The filter wheels allow us to rotate different filters into and out of the
beam line without having to realign the optics. One wheel has filters with
neutral density values of ND = {0.03,0.5, 1.0, 1.5, 2.0, 2.5}. The other wheel has
values of ND = {0.03, 0.1, 0.2, 0.3, 0.4, 0.5}. The two wheels are placed in series
and together they allow us to vary the attenuation over 3 orders of magnitude in
logarithmic steps of 0.1. We use a third filter wheel to hold two filters with
values of ND = (1.5, 3.0} that allow us to further increase the attenuation. We use
these ND filters to adjust the intensity of both the laser light and the light from
the mercury lamp. The output of the laser is also attenuated by a high-power,
fiber-coupled filter with a value of ND=4.0 before reaching the optical bench.
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Interference filters are the second type of filter. These are narrow
bandpass filters, with a typical FWHM of only 10 nm. The filters have two
highly reflective metal surfaces, separated by a precise distance. The two
surfaces reflect all wavelengths strongly, attenuating the light. However, they
also create a resonant cavity, defining the center wavelength of the filter. Light of
the resonant wavelength builds in the cavity to a relatively high intensity, such
that despite the fact that most of it is reflected by the far surface, the total
transmission is of order unity at the center wavelength. We have four
interference filters, each with a center wavelength matched to one of the spectral
lines of the mercury lamp. These filters are placed in a filter wheel that allows us
to easily change which mercury line is shone on the device. We have filters that
select the 254 nm (4.89 eV) UV line, the 436 nm (2.85 eV) violet line, the 546 nm
(2.27 eV) green line, and the 690 nm (1.80 eV) red line. The peak transmission
varies such that the intensities of the all lines are the same after the filters.
(Actually, the red filter is not exactly matched to the red mercury line. Itisa
generic filter with a center wavelength close to the red line.) These filters are not
used with the laser, which naturally emits a single wavelength.

After being conditioned by the various filters on the optical bench, the
light is collected by a second, identical collimating lens that refocuses the light
back into a fiber splitter. The light collected by the input fiber of the splitter is
equally split between two output fibers. One of the output fibers goes to the
dewar. The other one goes to a room temperature photomultiplier tube (PMT)
that is used to monitor the intensity of the light sent into the dewar. The PMT is
housed in a custom-made metal case that shields it from stray light. The fiber is
connected to a coupler that screws directly into the PMT case.

The optical bench was designed with a collimating lens on both ends to
minimize the amount of stray light focused into the fiber splitter. The second
lens only focuses light into the splitter that is moving parallel to the optical axis
of the bench. Thus, the solid angle from which the lens collects light is relatively

small. In fact, if we cover the optical bench with an ordinary cardboard box with
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slits cut for the fibers to enter and exit, the amount of stray light entering the
fiber is undetectable by the PMT, even with the room lights on. By undetectable,
we mean that the PMT current generated by the stray light is negligible
compared to the thermal dark current of the PMT, which is 10 nA. The typical
intensities we use to test STJs correspond to PMT currents of 1-3 pA. Thus, the
ratio of source light intensity to stray light intensity is ~10° or better.

One end of the fiber splitter brings the light to the dewar. The light is
coupled through the bulkhead of an rf-shielded enclosure (which we will discuss
later) using a fiber coupler. Inside the shielded enclosure, a final fiber patch cord
brings the light to a custom made vacuum fiber feedthrough mounted to the
dewar. This feedthrough was made starting with commercial Quick Connect
parts. Quick Connect parts are designed to bring tubes or conduits into a
vacuum system. They have a stem that accepts a tube and a collar that can be
screwed down to compress an o-ring against the sides of the tube. We welded a
stem onto a custom flange made to fit the dewar. We then machined a brass
Quick Connect blank cap to make the feedthrough. The blank cap is designed to
plug the stem when it is not being used. We show a schematic of the modified
cap in Fig. 2.1. We first dimpled the top of the cap. We then drilled a large hole
down the axis of the cap from the bottom leaving only a small thickness of brass.
We then drilled a short, 600 um diameter hole connecting the top and bottom.
We then fed an Al-coated UV fiber, with a total diameter of about 500 um,
through the hole. Finally, the gap between the fiber and the cap was sealed by
adding a small amount of Crazy glue to the dimple on the top of the cap. We
have successfully tested the feedthrough down to a vacuum pressure of 5 x 10°
Torr, which is the limit of our diffusion pump system.

Inside the dewar, the Al-coated fiber is first wrapped around the liquid N,
can and then wrapped around the liquid ‘He can before entering the sample
space. A length of about 1 meter of the fiber is fixed to each can with Al tape.
This is done to progressively cool the fiber. The fused silica fiber we use is not

treated to remove water and so, water impurities in the fiber absorb infrared
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Figure 2.1 Schematic of fiber feedthrough made from Quick Connect blank cap. Measurements
are in inches, unless otherwise noted.

radiation. Thus, the progressively cooled fiber acts as an infrared filter, each
cooled section absorbing blackbody radiation from the previous, warmer section.

We use an Al-coated fiber for a number of reasons. First, it allows for a
good vacuum seal at the feedthrough. Second, it improves the transmission of
the fiber in the deep UV range. The Al coating does this by reflecting light that
escapes the dielectric back into the fiber. The coating also greatly improves the
mechanical strength of the fiber, allowing it to survive many thermal cycles.
Finally, the Al coating may improve the thermal contact of the fiber with the
dewar.

At the sample stage, the fiber is suspended from the liquid *He stage and
the end of the fiber is brought within a few millimeters of the device on the 02K
cold finger. The fiber does not physically touch the 0.2 K stage anywhere. The
fiber is roughly aligned by eye to the device. To do this, a piece of lens paper is
placed on top of the device. A laser pointer is then shone into the fiber at the

vacuum feedthrough. The laser light coming through the fiber produces a spot
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about one millimeter in diameter that is aligned to the device. The lens paper is
thin enough to allow us to see the wiring of the devices underneath but opaque
enough to make the laser spot visible. We estimate that only about one part in
10* of the light exiting the fiber lands on the device. While this inefficient
coupling would clearly be inadequate for a real spectroscopy system, it is
adequate for testing the devices.

Besides using the optical fiber to test the devices, we can also use it to
warm the detector tunnel junctions above their transition temperatures fora
short period of time during a cryogenic run. While this was not a design goal of
the optical system, it has proven to be an extremely valuable addition to the
experimental setup. (In fact, when testing X-ray devices, we still position the
optical fiber to allow the junctions to be heated.) A variety of problems,
including the presence of stray magnetic fields during cool down or an
oscillating amplifier, can lead to fluxons becoming trapped in the electrodes of
the detector tunnel junction. The presence of this trapped flux can degrade the
performance of the detector in a number of ways, from instability in the bias to
decreased dynamic resistance. Itis very difficult to remove the fluxons as long as
the junctions remain superconducting and, in the past, trapped flux ended many
cryogenic runs. The only reliable way to remove the trapped flux is to warm the
junctions above their transition temperature. Warming the entire cold stage
above the transition temperature of Al (~ 1.3 K) is impractical. In addition, trying
to locally heat the immediate surroundings of the device electrically is difficult
because the copper cold stage conducts heat well. With the optical fiber,
however, we can illuminate just the junctions and the surrounding surface of the
substrate with an intense burst of light (from a laser pointer) and warm them
above the transition temperature for a few seconds without warming the rest of
the cold stage. We see no substantial decrease in run time due to this process.
This laser cycling works reliably and has greatly improved the efficiency with

which we can test detectors.

20



2.4 Electronics

The electronics used to read out the signal from our detectors has been
discussed extensively in previous dissertations [Segall 2000], [Friedrich 1997a]. I
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Figure 2.2 Simplified schematic of the signal preamplifier.

will only provide a general description, emphasizing changes that have been
made. We start with a commercial amplifier, the Amptek A250. One unique
property of the A250 is that we can couple it to a discrete input FET, chosen to
best match the characteristics of our detectors. We use the 25K146 FET, which is
two 25K147 FETs packaged together in one metal can. We use the amplifier in a
transimpedance configuration with a resistor providing feedback from the
output of the A250 to the gate of the 25K146. The total amplifier has a low input
impedance (~ 100 Q) and draws current from the detector across the feedback
resistor producing a voltage at the output. We typically usea 1 MQ feedback

resistor.
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The A250 was designed to be used as an AC coupled amplifier. We add
extra circuitry in parallel with the input FET that provides an active DC voltage
bias for our detectors. The extra circuitry consists of an OP97 op-amp configured
as a voltage follower connected to an OP77 op-amp configured as an integrator.
Referring to Fig. 2.2, we see that the input of the OP97 is connected to the device
(along with the gate of the input 25K146) and monitors the voltage across the
device. The OP77 compares that voltage to a reference voltage and injects
current (through a resistor) into the input of the A250. The OP77 is configured as
an integrator so that it provides a large gain at DC, but contributes little noise (or
gain) at signal frequencies. Both the OP97 and OP77 are precision op-amps with
small voltage offsets and drifts.

The most significant improvement made to the electronics was to cool the
feedback resistor. For X-ray measurements, the Johnson current noise of the
1 MQ feedback resistor, 130 fA/VHz, dominates the electronic noise of the
measurement setup. However, the electronic noise only contributed a small
amount of broadening to the total energy width. Since the signals are much
smaller in the optical/UV energy range, however, the electronic noise needed to
be reduced. This was done by moving the feedback resistor from room
temperature to the ‘He stage, so that its temperature is 1.5 K during
measurements. This should reduce the Johnson noise of the feedback resistor
from 130 fA/VHz to 9 fA/VHz. Along with connecting the amplifier to the cold
feedback resistor, we needed to provide a room temperature feedback path so
that we could turn on and test the amplifier without having it connected to the
detector. At first we tried putting a warm 100 MQ feedback resistor in parallel
with the cold resistor. The warm 100 MQ resistor provided a feedback path
while not contributing a significant amount of Johnson noise. However, when
we would first connect the cold 1 MQ resistor in parallel, the sudden change in
the feedback condition of the amplifier produced a large transient response that
tended to trap flux in the detector tunnel junction. In the end, the solution we

found was to use two room temperature switches, labeled S1 and S2 in Fig. 2.3.
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Figure 2.3 Simplified schematic of AC electronic circuit, showing switches S, and S, that allow us
to switch between the warm and cold feedback resistor.

These switches allow us to first bias the junction with a warm feedback resistor
(S1 open, S2 closed), then connect the cold feedback resistor in parallel using S1,
and finally disconnect the warm resistor using S2.

We acquire data using a digitizing oscilloscope, the Nicolet Integra 40. The
oscilloscope has four differential input channels. It digitizes the input to each
channel with 12 bit precision and a maximum sampling frequency of 20 MHz.
Each channel of the oscilloscope has a one million sample memory. When the
oscilloscope memory is full, data is downloaded over a GPIB bus to a personal
computer. We use the oscilloscope to acquire both photon-induced current
pulses and noise traces for diagnostics. When we acquire current pulses, many
pulses are saved in the oscilloscope memory before being downloaded. When
acquiring noise traces, the memory is typically filled with a single long trace.
Once downloaded, the noise traces are fast Fourier transformed to produce noise
spectra. Then a number of spectra (typically 100) are averaged, and the average
spectrum is saved to disk. The current pulses are saved to disk as is.

2.5 Grounding, Shielding and Filtering

The smaller signals associated with optical/ UV photons necessitated
reducing electronic noise in the measurement system, including contributions

from electromagnetic interference. Thus, a large amount of work has gone into
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improving the grounding, shielding and filtering in the measurement system.
While the development of the present configuration has been guided by some
general principles of grounding and shielding, much has also been decided
through trial and error.

When designing or analyzing a design for grounding and shielding a
measurement system, it is important to distinguish between the earth ground of
the shield and the electrical ground of the measurement circuit. The earth
ground of the shield literally connects the shield to the Earth, which is usually
the zero potential of power systems and radio transmission. In general, no
currents associated with the signal to be measured should flow to earth ground
and conversely, currents flowing to earth ground should not be detected by the
measurement circuit. The electrical ground of the measurement circuit is the
node defined to be zero potential in the circuit. Although this node is generally
treated as special, it is just another set of conductors. Currents or voltages
induced in the electrical ground by interference will in general be detected by the
measurement circuit, becoming noise. We generally do connect the electrical
ground of the circuit to the shield and earth ground at one or more points.
However, this forces them to be at the same potential only at DC. The potential
on the grounds can vary spatially on size scales down to the wavelength of the
electromagnetic interference. This implies that radio frequency interference can
create different potentials in the grounds even if they are connected together. In
addition, when designing a system for low-frequency shielding, against 60 Hz
interference for instance, it is important to consider the path of currents
generated by an induced electromotive force (EMF). A successful design forces
induced currents to flow in the conductors of the shield and not the electrical
ground, where the currents become a source of noise.

The starting point of our design is a commerial shielded enclosure made
by Lindgren RF-Enclosures, Inc.. The shielded enclosure is a cube, 4 feet on a
side. Each side is made from two 1/4" steel plates separated by a couple inches

of plywood. There are two doors, one on the side and one on the top, that allow
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access to the inside of the enclosure including inserting and removing the dewar.
The doors close tightly with a set of copper “fingers” welded to each of the
doors’ steel plates. There is a 1” tube in one wall that allows us to pump on the
dewar while it is inside the enclosure. The tube is filled with cooper wool to
allow gas flow while preventing electromagnetic radiation from entering. The
enclosure also has a power line filter that allows filtered, AC power to be brought
into the enclosure, although we have not used AC power in the enclosure to date.
There is a 1/2” diameter brass screw threaded through one side of the enclosure.
The screw contacts both the inner and outer steel plates, electrically connecting
them at one point. We connect this screw to a copper cold-water pipe using a 1”
thick braided grounding strap. This point serves as the earth ground of the
shield. Connecting a DC ohmmeter between the shielded enclosure and the third
prong of an electrical outlet, we measure a resistance of about 1 Q. (Earthing the
enclosure is also an electrical safety issue.)

Inside the enclosure, the dewar is connected by a grounding strap to the
brass screw, earthing the dewar. The electronics are enclosed in a metal box
which is connected to the dewar using a military connector. The dewar and
electronics box form a continuous metal shield. All of the electronics inside the
enclosure are battery powered. The detector, contained inside the dewar, is
connected to room temperature differentially using a twisted pair of wires. The
negative signal wire, or electrical ground, is connected to a ground plane and
then to the metal box at one point, physically close to the source of the AC
amplifier’s input FET. The electrical circuit itself has two distinct grounds: an
input ground and an output ground. The input ground includes the negative
signal wire coming from the detector to room temperature. The output ground is
isolated from the input ground by a set of INA110 instrumentation amplifiers
that prevent noise from coupling back to the input. There are separate battery
supplies for electronics connected to the input ground and the output ground. In
practice, the input and output grounds are connected by a 1 MQ resistor, that

prevents the two grounds from developing different electrostatic potentials. This
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reduces the isolation to some degree, but any induced EMF should drop across
this resistor and not create signals in the two grounds. The output of the
instrumentation amplifier and the output electrical ground are brought out of the
box on a triax cable. The triax cable has three coaxial conductors: the center
conductor, the inner ground and the outer shield in order from inside to outside.
The output of the instrumentation amplifier is connected to the center conductor
and the output ground is connected to the inner ground. The outer shield of the
cable contacts the electronics box. The triax cable runs to the wall of the
enclosure where a triax feedthrough brings the center conductor and inner
ground outside of the box. The feedthrough goes through a metal plate screwed
to the outer wall of the enclosure. There is hole in the inner wall behind the
plate.

Outside of the enclosure, a short triax cable brings the center conductor
and inner ground to another battery-powered electronics box. The outer shield
of the triax connects the outer wall of the enclosure to the metal case of the
electronics box. Inside the metal case, the center conductor and the inner ground
are connected differentially to another instrumentation amplifier. This
instrumentation amplifier amplifies the signal coming out of the enclosure with a
gain of 10. The output of the amplifier is connected to the center conductor of a
standard coax connector. The output ground of the amplifier is connected to the
outer conductor of the coax, which is also connected to the metal case of the
electronics box. The instrumentation amplifier provides a high degree of
isolation between the electronic ground coming out of the enclosure and the
shield, preventing noise from coupling back. At this point, our signal is carried
by a standard coax cable for a few feet. This is the only place that a signal wire
(in this case, the ground) is unshielded by another conductor. We go over from a
triax cable to a coax cable to facilitate connecting other components and
amplifiers. It does not compromise the shielding too much at this point because
the signal is amplified enough by the last instrumentation amplifier that the level

of interference is not significant.
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The signal is now brought by the coax cable to a Princeton Applied
Research (PAR) 113 amplifier, which is battery powered. The signal is amplified
another factor of 10 and is also filtered to remove noise. The output of the
PAR113 is then connected to the input of the digitizing oscilloscope, which
records the signal. For many of the measurements in this dissertation, the
PAR113 and oscilloscope were connected with a standard coax. This
configuration connects the electronic ground of the amplifiers outside of the
enclosure to the case of the oscilloscope, which is in turn connected to the earth
ground of the power outlet. The electronic ground of the outside circuit is also
connected to the outer wall of the shielded enclosure, which is earthed. Thus,
this configuration creates a large ground loop that is completed by the two earth
connections. However, by the time the signal reaches this point, it has been
amplified by a factor of 1000. Consequently, in early measurements, the 60 Hz
interference coupled by this ground loop was unimportant when referred to the
input.

In later measurements, when the electronic noise had been reduced, 60 Hz
interference dominated the low-frequency noise. The solution we found was to
connect the output of the PAR113 to the oscilloscope differentially. The
oscilloscope that we use can measure a differential signal by connecting the plus
and minus signal wires as the center conductors of two standard coax cables. In
our setup, the signal is carried from the PAR113 on a triax cable. At the
oscilloscope an adaptor connects the center conductor and inner ground of the
triax to the center pins of two coax connectors. The outer shield of the triax
connects to the outer conductors of the coax connectors, which connect to case of
the oscilloscope. In this configuration, there is still a short section of the electrical
ground (between the second INA110 and the PAR113) that is part of the shield.
However, we do not observe any 60 Hz interference, due to the high signal level
at this point.

So far, we have described the AC signal path. There are also electronics
that read out the DC bias voltage and current of the detector. The bias voltage
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and current are read differentially by a pair on INA110 instrumentation
amplifiers. The outputs of the instrumentation amplifiers are then connected to a
pair of optical isolation amplifiers that provide a very high degree of input-
output isolation. The outputs of the isolation amplifiers and their output
grounds are carried to the wall of the enclosure by standard coax cables. Outside
of the enclosure, the pair of coax runs to the two inputs of an analog X-Y
recorder. The bias current and bias voltage signals are read differentially by the
X-Y recorder. The differential inputs of the X-Y recorder are very well isolated
from the recorders case, which is connected to earth ground. We have never seen
any 60 Hz or other interference in the AC signal related to the DC circuit being
connected to the X-Y recorder.

All of the AC and DC lines coming out of the shield enclosure are filtered.
The filters are custom-made T-filters that filter the signal coming out the
enclosure, but also filter any interference or radiation coupling back into the
enclosure. The filters are constructed in a way the prevents radio or microwave
signals from coupling radiatively around the lumped elements that form the
filters. To make the filters, we start with a metal box with BNC connectors on
either end. A thick Al plate is inserted into the box, dividing the two sides. The
inside surface of the box is prepared to ensure good electrical contact between
the walls of the box and the divider. The edges of the divider are tapped with
holes that allow screws to press the walls of the box firmly against the divider. A
hole is also tapped through the divider along the axis of the BNC connectors. A
commercial feedthrough capacitor is bolted into the hole. (We actually use a
commercial LC pi filter, but the inductance is negligible at signal frequencies.
Still, it may help suppress high-frequency interference. The feedthrough filter is
made by Spectrum Control, Inc. and is part number 1250-003.) Finally, a resistor
is soldered on each side, connecting the center conductor of each BNC connector
to the center pin of the feedthrough capacitor. The filters on the AC lines have a
cut-off frequency of 150 kHz. The filters on the DC lines have a cut-off frequency
of 1 kHz.
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Chapter 3
Physical Noise Processes: Thermodynamic Fluctuations

3.1 Introduction

There are myriad physical processes that add noise to our devices,
meaning they increase the uncertainty in the energy of the incoming photon. In
this chapter, we will discuss thermodynamic fluctuations of the number of
steady-state quasiparticles in the Al electrodes of the ST] [Wilson 2001b]. We
will show that these fluctuations lead to excess current noise in the tunnel
junctions, which imposes an important limit on the resolution of backtunneling
ST]s.

Statistical mechanics elucidates the microscopic origin of the laws of
thermodynamics. It connects the thermodynamic variables of a system to the
ensemble averages of microscopic quantities. Despite the fact that it is only a
theory of average quantities, thermodynamics is very successful at describing the
behavior of macroscopic system. This fact can be understood if we consider the
fluctuations of thermodynamic variables predicted by statistical mechanics. For
example, consider a small container filled with a gas that can exchange energy
and particles with a reservoir. This type of system is described by the grand
canonical ensemble. In equilibrium, the chemical potential and the temperature
of the gas in the container equal those of the reservoir and are fixed. However,
the energy and number of particles in the gas are variables and can fluctuate. For
instance, if the container holds an ideal gas with N° particles on average, the
grand canonical ensemble tells us that the fluctuations are exactly (N°)/* [Pathria
1972]. If N is macroscopic (of order Avogadro’s number) then the relative
fluctuations will be very small, of order one part in several trillion. The same is
true for the fluctuations in the energy of the gas. The diminutive scale of these
fluctuations implies that a macroscopic gas is described very well by its average,

thermodynamic variables.
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On the other hand, the same analysis suggests that fluctuations of
thermodynamic quantities can be important in “small” systems. For instance, if
the average number of particles in the gas is only about 10* then the relative
fluctuations will be 1%. In this case, it is not clear that the average,
thermodynamic variables can describe the system adequately. In any case,
fluctuations with this relative size can have important, measurable consequences.
To appreciate these consequences, it is crucial to understand not only the
magnitude of the fluctuations but also the dynamics of equilibrium. When the
gas is in equilibrium with the reservoir, the average flow of particles entering the
gas from the reservoir cancels the average flow of particles leaving the gas.
However, the flow of particles into and out of the gas is a random process, so that
the two flows do not exactly cancel at all times. This causes the number of
particles to fluctuate in time. Furthermore, if the characteristic time thata
particle spends in the gas before returning to the reservoir is 7, then we expect
the frequency spectrum of the fluctuations to be spread over a bandwidth 1/7.

The thermal quasiparticles in the Al electrodes of an ST] detector form a
Fermi gas. This quasiparticle gas is coupled to a particle and energy reservoir
formed by the Cooper pair and phonon systems. In backtunneling devices, the
quasiparticle gas in the Al electrodes is isolated by the high-gap Ta on both sides
of the junction. In effect, the electrodes form an Al box confining the
quasiparticle gas. In typical devices, the box has a volume, Vol =100 pm?.
Particles flow into and out of the gas only through the processes of quasiparticle
generation and recombination. Thermal quasiparticles in the Al cannot diffuse
into the Ta because the difference between the superconducting energy gap of Ta
(A= 700 peV) and the energy gap of Al (A, =180 ueV) is much greater than
k,T ~ 20-40 peV. There are no thermal quasiparticles in the Ta at our base
temperatures. Based on our general discussion above, we expect that the
number of quasiparticles in the Al will fluctuate on the time scale of quasiparticle

recombination.
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We can calculate the quasiparticle number in thermal equilibrium by
integrating the BCS density of states. Assuming that the quasiparticles obey a
Fermi distribution and that k;T << A, we find

N(T) = D(¢; Wol|27A .k, T exp{- Bu J (3.1.1)

kyT

where D(g,) is the two-spin electron density of states at the Fermi energy. In our
measurements k.T << A,,, so the Fermi gas is nondegenerate. Its density is less

than 107 that of excitations in normal-state Al at this temperature.

3.2 Theory: One-Variable Master Equation

We now develop a model that connects the frequency dependence of the
fluctuations to the dynamics of quasiparticle generation and recombination. To
treat fluctuations in the system, we construct a master equation similar to the
Fokker-Planck equation. This differential equation describes the probability
distribution of the occupancies of various subsystems (levels). We follow the
treatment by van Vliet of generation-recombination noise in semiconductors [van
Vliet 1965], except that we generalize the description to allow for transitions that
involve an arbitrary number of particles, e.g., two quasiparticles recombining.
The Al box is well described by the three level system of Rothwarf and Taylor
[Rothwarf 1967]. The occupants of the levels are quasiparticles in the box,
phonons with energy E_ > 2A in the box, and phonons with energy E, > 2A in the
bath. We can in fact predict the fluctuation of an arbitrary number of levels.
However, the development is not particularly illuminating. We will instead
present a detailed derivation for a simplified two-level system, and quote results
for a multilevel system later.

We can consider one level of our system to be quasiparticles. The second
level could be Cooper pairs or quasiparticles in traps or something else,
depending on the exact nature of the system that we are trying to model.

Regardless of exactly what the second level is, it is not in general independent of
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the first level because the total number of excitations in the two levels is
constrained. For instance, the number of quasiparticles plus Cooper pairs is
constrained by the total number of electrons, due to overall charge neutrality.
Furthermore the creation of two quasiparticles implies the loss of one pair, and
vica versa. Therefore, we only need to count the number of quasiparticles, N,
and can describe our system with a one variable master equation:

WO _ ~[g(N)+ r(N)]- PN, }k,0) + g(N —&N) - P(N - 8N, t}k,0)

5 (3.2.1)
+ r(N +8N)- P(N + 8N, t|k,0)

where P(N,k,0)is the probability that there are N quasiparticles at time t given
there were k quasiparticles at t=0. The function g(N) is the probability per unit
time that there will be a generation event in the box when there are N
quasiparticles. In other words, g(N)dt is the probability of a generation event in
the time interval dt. Similarly, the function r(N) describes the probability per
unit time of recombination. The parameter 3N is the number of quasiparticles
added (removed) by a generation (recombination) event. We can understand the
structure of the master equation quite simply. It describes the rate of change of
the probability that there are N quasiparticles in the system. The rate of decrease
in the probability equals the probability that there are N quasiparticles times the
probability per unit time that there will be a generation or recombination event.
This is what the first term in the master equation represents. The rate of increase
in the probability is equal to the probability that the system is one generation
event away from having N quasiparticles times the probability per unit time that
there will be a generation event plus a similar term for recombination.

The master equation is an countably infinite set of coupled differential
equations. Luckily, we do not need to solve the master equation for it to be
useful. We can instead use the master equation to construct much simpler
equations for quantities like the variance and correlation function of the

fluctuations.
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We begin by calculating the variance of the fluctuations. The variance is
an equilibrium property, so we can set the left side of the master equation to zero.
If we then multiply the equation by N, and sum over all possible N, we get the
simple relationship:

(g(\))=(r(N)) (3.22)
where the angle brackets mean the expectation value over all N. If we expand
both g(N) and r(N) in a Taylor expansion around the equilibrium value N°, we
get

g(N®)+ L g (N AN ) = r(NV®) + 1 F"(N°)(AN?) (32.3)
where the primes indicate the derivative with respect to N and AN =N~ N° The
first order terms vanish because (AN) =0 in equilibrium. In addition, in most

cases g(N),r(N) ~ N?and (AN 2> ~ N, so we can neglect the second order terms

and simplify to
g(N°) = r(N®). (3.2.4)
This is the reasonable statement that the generation and recombination rates
must balance in equilibrium.
If we again set the left-hand side of the master equation (3.2.1) to zero,

multiply by N? and sum over all N, we get the relationship

o)) o

If we again expand g(N) and r(N) around N° and use (3.2.3) to simplify, we can
find the following expression for the variance of the fluctuations

r(N%
FIN®) =g (N*)

(aN?) = (3.2.6)

where we have again neglected second order terms in the final expression.

We can also use the master equation to calculate the power spectrum of
the fluctuations. To do this, we first calculate the autocorrelation function of the
fluctuations and then compute its Fourier transform. The autocorrelation

function at lag u is defined as:



®(u) = (NON W)= X, k- j - P(k.0:j,u) (3.2.7)

ko
where P(k,0; ju) is the joint probability that there are k quasiparticles at t=0 and
that there are j quasiparticles at t=u. (By lag we mean the amount of time that
one signal is shifted with respect to the other). We can simplify this expression
by factoring the joint probability distribution into P(k.0;j.u)= P(j.ulk,0)- P(k,0)
giving

d(u) = gk - P(k,0)Y, j - P(j,uk.0) = ;k (N, - P(k,0) (3.2.8)

i

where P(j.u|k,0) is the conditional probability of having j quasiparticles at t=u
given that there were k at t=0 and (N ), is the expectation value of N given that
there were k quasiparticles at t=0.

To further simplify this expression, we start by deriving a differential
equation for (N), using the master equation. In this case, we need to use the full
master equation (3.2.1) without setting the time derivative equal to zero. If we
multiply both sides by N and sum over all N, we get the equation

%(Nh =8N ((g(N)) - (r(N))). (329)

We cannot solve this equation explicitly, because we do not know the expectation
values on the right-hand side. However, we can find an approximate solution by
again expanding g(N) and r(N) around N°. We find the simple result

d (AN), o 1 1
— (AN o = (kN : = e—_
du( )"'” T 4 SN r'(N°)-g'(N°)

where T appears as the effective relaxation time of the fluctuations. This equation

(3.2.10)

has the simple solution
(AN, =(k=N °)exp(—%). (3.2.11)

Inserting this solution into (3.2.8) we find the autocorrelation function of the

fluctuations to be

AD(u) = (AN(0)AN(w)) = (AN Z)exr{—;J (3.2.12)
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r(N)

g(N)

Probability per unit time

Number of Quasiparticles

Figure 3.1 Sketch of the generation and recombination parameters, g(N) and r(N). The intersec-
tion of the curves yields the steady-state number of quasiparticles.

where (AN 2) is the variance of the fluctuations. We can then directly compute
the power spectrum, G(w), of the fluctuations as the Fourier transform of the

autocorrelation function. We find

(3.2.13)

We now have general expressions for the variance and power spectrum of
the fluctuations in our two-level system. Before we specialize the equations
more, we can make some general comments. First, if we combine (3.2.6) with
(3.2.10), we find the much simpler expression for the variance of the fluctuations:

(AN?)=(8N)* r(N®) . (3.2.14)
This says that the variance of the fluctuations is of order the number of particles
that recombine in one correlation time. Now, looking at (3.2.10), we see that T is

inversely proportional to 8N. This says the more quasiparticles that are lost
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(created) by a single recombination (generation) event, the faster the fluctuations.
Also, looking at (3.2.10) we see that the time scale of fluctuations is inversely
proportional the sum of the derivatives of the generation and recombination
rates. This has a simple physical interpretation. In Fig. 3.1 we sketch the
recombination parameter, r(N), and generation parameter, g(N), as a function of
N. First, we note that the value of N where the curves intersect is the equilibrium
value N°. Next, we notice that for a stable system the derivative of r(N) will
always be positive and the derivative of g(N) will always be negative. This is
what maintains equilibrium. For example, if N fluctuates greater than N°, then
the recombination rate increases and the generation rate decreases. Both of these
changes drive the system back to equilibrium. Even more, the steeper the change
in the rates around equilibrium, the faster the system is driven back to
equilibrium. This is why the time constants depend on the derivatives of r(N)
and g(N) and why their contributions sum together.

To be able to apply the formulas derived above we must know what r(N)
and g(N) are for our system. Luckily, if we already understand the dynamics of
the system, it is general easy to deduce r(N) and g(N). In general, the rate

equation of our system will be of the form
dN '
== SN(g(N) - r(NV)). (3.2.15)

If we can derive or know an appropriate rate equation for our system, we can
then read off g(N) and r(N).

We can consider, as an example, the case of simple generation and
recombination of quasiparticles. By simple, we mean that quasiparticles are only
lost to recombination with other quasiparticles and we ignore the effects of
phonon trapping (which we will return to later). In this case, the two levels of
our system are quasiparticles and Cooper pairs, with the total number of
electrons constrained to be the normal state value. We will further assume that
we are working at low temperatures and that the number of quasiparticles is

small compared to the number of Cooper pairs. In general, we would expect
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g(N) to depend on the number of Cooper pairs. However, since the relative size
of the fluctuations will be small compared to the number of Cooper pairs, we will
assume g(N) is constant and equal to the equilibrium recombination rate. With

that we can write the rate equation for our simple system as

dN 1 R
e FG—EV_oINz] (3.2.16)

where [, is the constant generation rate, Vol is the volume of the system, and R
is the recombination constant. The recombination constant is basically a constant
of proportionality between the recombination rate and the number of ways to
combine N quasiparticles, which is N*/2.

From this rate equation, we can read off the parameters of our model:

1 R ,,
gN)=T;, ; riN)=-—N" ; N=2, (3.2.17)
2 Vol

We can then easily put these parameters into the equation above to find a
familiar result for the variance of the fluctuations, (AN*)=N°. We can also easily
write down the power spectrum of the fluctuations
Clr= 117;; FEE 22%o '
We see that the spectrum has a simple Lorentzian form with a bandwidth given

by 1/1.

(3.2.18)

3.3 Theory: Multivariable Master Equation

The simple one-variable master equation derived above is illustrative, but
it is not sufficient to describe generation and recombination in a physical
superconductor. In a thin-film superconductor, the phonon emitted when a pair
of quasiparticles recombines can break another pair before the phonon escapes
the film into the bath. This process, known as phonon trapping, extends the
effective lifetime of a quasiparticle. We must therefore account for this process if

we want to describe quasiparticle fluctuations in a physical superconductor. To
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() ————— N,

Figure 3.2 Schematic representation of our three level system. From top to bottom, the levels are
quasiparticles, phonons in the electrodes, and phonons in the bath.

do this, we model our junction as a three level system, shown schematically in
Fig. 3.2. The population in the three levels will be labeled by N, N, and N_
which are the number of quasiparticles in the electrodes, the number of phonons
with energy E_> 2A in the electrodes, and the number of phonons with E_ >2A in
the bath respectively. We only keep track of phonons with E, > 24 because they
are the only phonons that can generate new quasiparticles.

In the previous section, we thought of two quasiparticles recombining to
form a Cooper pair, instead of quasiparticles recombining to form a phonon. In
the end, however, N_ is a more natural variable than the number of Cooper pairs
for several reasons. From a statistical point of view, we can account for the
recombination of two quasiparticles equally well as a transition toa Cooper pair
or a transition to a phonon. From a dynamical point of view, however, keeping

track of phonons is much more important then keeping track of Cooper pairs. As
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we will see shortly, the presence of phonons created by recombination can
significantly change the effective recombination rate measured in experiments.
On the other hand, the rate I’y at which phonons break pairs and generate
quasiparticles is proportional to the number of Cooper pairs, but as long as the
number of pairs is much greater than the number of quasiparticles, then I’y is
approximately constant. Thus, we see that N_ is a better choice.

We can describe the dynamics of the levels with the following system of

three coupled differential equations:

dN 1 RN?
7;:2{—5—70—1—+ FBNw} (331)
dN_ 1 RN?
dtw = 5707 b rBNw - FESNGJ + rKNm,B (3‘3'2)
dN
dat,.a =[N, -TN,, (3.3.3)

where I is the rate at which phonons escape from the electrode to the bath and
I, is the rate at which phonons enter the electrode. The factor of 2 in the first
equation comes from the fact that quasiparticles are generated and recombine in
pairs. We have neglected the anharmonic decay of phonons as a loss process
because it happens on a time scale much longer than phonon escape at these
energies.

We can simplify these equations with the approximation that N, is
constant, which is justified because the exchange of phonons with the junction is
a very small perturbation to the bath. This simplification reduces (3.3.3) to the
equality I,N = [N, ;°, where the superscripts indicate equilibrium values. We
can then rewrite (3.3.2) as:

dN, L RN®
w - " [N, -T(N,~-N, 3.2

We then see that (3.3.1) and (3.3.2") are the well known Rothwarf-Taylor
equations [Rothwarf 1967].
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Following Gray [Gray 1981], we can linearize these equations for small
perturbations by writing N =N° + AN and N, = N’ + AN, and simplifying. If
we let the vector a = (N, N ) then we can write the linearized equations in

matrix form

jl(_A.a;)=—r.Aa . r:
dr !

where we have taken ', = Iy + [ and I, = RN°/Vol as the equilibrium

20, -2r,,] 634

-, T,
recombination rate. The eigenvalues of I' determine the time constants of the
system'’s response to small perturbations. Gray showed that the dominant time
constant for the quasiparticle response in the limit [, << g+ T'gs is

[ *=2I4F,' ; F,=1+ %”— (3.3.5)

ES

where F_ is called the phonon trapping factor. It accounts for a phonon emitted
by a recombination event breaking another pair before it escapes to the bath. We
note that F " is just the probability that a phonon escapes to the bath. I';*is the
time constant with which a small perturbation of the quasiparticle system will
decay, and it is the rate we expect to measure in experiments. We see that the
measured recombination rate, I';*, is in generally very different from the true
equilibrium recombination rate I';.

We can treat the fluctuations of this system with a multivariable master
equation. The basic idea is the same as before, except we now describe the state
of the system with levels (1) - (S) by a vectora = (N, N, ..., No) which represents
the occupation of each level. In general only S-1 levels will be independent since
the total number of excitations is constrained. We start by writing down the
master equation for the process:

oP a.tla EP

a’za a‘za

where P(a,t|a’,0) is the probability that the system is in state a at time t given that

a’,0)0(a"a) (3.3.6)

it was in state a’ at t=0, etc. and Q(a,a”) is the transition probability per unit time

from state a” to a. Again, the first term says that the rate of change in the
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probability of finding the system in state a is the probability of it being one
transition away from a times the rate of transition to a. The second term
accounts for transitions out of state a. We can make this less abstract if we notice
that the only allowed transitions in our system involve a single loss event in one

level causing a creation event in a second level. We can then write

3 "—
p, ;2 -{nl,...,n‘.,....nl,...}

Oaa") = a={n,..n—n,..n;+on,..} 557

0 : otherwise

where 8n. is the “shot size” for each level.

We can then proceed along the same lines as the derivation in section 3.2.
[ will not include the detailed derivation, instead quoting the results and
referring to [van Vliet 1965] for a more detailed treatment. In analogy to the
linearized time constant found in (3.2.10), we can write a linearized rate matrix,
M, where the elements are:

con S| P Pu
M, —&.Z(a,vj 3”-]“ o (33.8)

k J

We can define a second matrix, B (which describes the second order Fokker-
Plank moments), whose elements are:

B; =5"?E(Pu + P.‘t) =2&32Pg

k=i kzi
. (3.3.9)
B, =—5n‘5nj(p,j + p‘,,.) =—&1,5nj(p?j + p‘;,.)

We can then write the covariance matrix
o’ =(AaAa")={M'B (3.3.10)

where Aa = a—a’. We can also write the cross power spectrum matrix as

Gw)= 2 R{(Hﬂ}- Bj (3:3.11)

w* i

where Re[ ] means the real part and 1 is the identity matrix. The diagonal terms
of G describe the power spectrum of the fluctuations of each level in the system.
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The off-diagonal terms of G describe the cross power spectrum between the
various levels. (The cross power spectrums are the Fourier transform of the
correlation functions between the fluctuations of the various levels.) Each
spectrum Gii is a sum of individual Lorentzian spectra, like (3.2.18), with
characteristic frequencies determined by the eigenvalues of M.

We can now specialize these results to our physical superconductor.
Again, we will describe the superconductor as a three level system consisting of
quasiparticles, phonons in the superconductor and phonons in the bath. The
three levels are connected by various transitions labeled {p} in Fig. 3.2. Each
transition represents a physical process that changes the occupation of the three
levels. Transition p,, describes two quasiparticles recombining to create one
phonon in the electrode. Transition p,, describes the reverse process, a phonon
being absorbed and generating two quasiparticles. Transition p,, describes a
phonon escaping from the electrode into the bath. Finally, p,, describes a phonon
entering the electrode from the bath. We note that there is no direct connection
between levels 1 and 3, the quasiparticles and the bath. Since we have a three
level system, our underlying master equation is a two variable equation. We
choose as our two variables the number of quasiparticles, N, and the number of
phonons in the electrodes, N,. Referring to the rate equations for the system,
(3.3.1) - (3.3.3), we can read off the transition probabilities, which we tabulate in
Table 3.1.

Transition Symbol Probability per unit time
recombination P (1/2)RN?/Vol

generation Px [N,

phonon escape P [N,

phonon entry Py [N

Table 3.1. Allowed transitions and the probability per unit time for each one.
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In addition to the transition probabilities, we can also read off the shot size for
each level, which is 8n, =2 for the quasiparticles and 8n, =1 for the phonons.
Plugging these parameters into the above equations we find

v ) gt 72
- _rR r ’ — R _2 l+% (3.3.12)

@

where [ =T + . With these matrices we can then write the covariance matrix

o (N° o] N0
= = , 33.13
0 N |0 Ln° (3:313)

where we have used the principle of detailed balance to relate N’ to N°. Thus,

for our system. We find

we again find that the variance of the occupation of each level is equal to the
average occupation, as we expect from basic thermodynamic arguments. We also
note that the off-diagonal terms are identically zero, implying that the
quasiparticle and phonon fluctuations are independent. This is somewhat
surprising since, as we will see later, the presence of the phonons does
significantly modify the spectrum of the quasiparticle fluctuations.

Experimentally, we can only measure the spectrum of the quasiparticle
fluctuations, so we will only calculate that spectrum. Using (3.3.11) and quite a
bit of algebra, we obtain the quasiparticle spectrum

20t N°  2a,T.N°

S(w)=G,,(w)= - 5
(@) =G, (@) @ s @n) (3.3.14)
where
o =206 a,=28"0
T,-7T, 7,-1,

and y,, =1/1,, are the eigenvalues of Mand 1, =1/T. Itis straightforward to
show that if we integrate S(w) over all @ we recover N? for the variance. This
expression is completely general. However, in the limit I’y << Ty + 'y we can
simplify the eigenvalues of Mto T, =1/ *and 7, = (T + [,)*', where I ;*is
defined in (3.3.5). In this case, one time constant basically corresponds to the
effective quasiparticle lifetime and one corresponds to the phonon lifetime. We

44



can then interpret the first term of (3.3.14) as “intrinsicO quasiparticle
fluctuations and the second term as phonon-driven fluctuations.
Now, in Al electrodes with our geometry and at the temperatures we are
working we expect I, ~10*s?, [, ~10° s and I, ~ 10" s [Kaplan 1976]. So, we
are very much in the limit just described. In addition, we expect a, = 2(1 - 10%)
and a, =2(10%). This gives us a simplified expression for the spectrum:
41, *N°

S(w) =
@ 1+ (w7, *)*

(3.3.15)

If we compare this expression with the spectrum found in (3.2.19), we see that
this power spectrum could have been obtained from a simpler one-variable
master equation assuming effective generation and recombination parameters

l ,
(N ==—R—N? ; g(N)=r(N®) (33.16)

2 F Vol

where the generation parameter g(N) is just a constant equal to the equilibrium
recombination rate. This simplification is not general, but it is possible in our
samples because the quasiparticle and phonon time scales are so widely
separated. Basically, the quasiparticle system cannot respond to the fast phonon
fluctuations and is only affected by the average number of phonons.

We note that comparing the two rate matrices in (3.3.4) and (3.3.12) ' = M.
As we have just seen, the eigenvalues of M determine the spectrum of the
fluctuations. On the other hand, the eigenvalues of I' determine the time
constants of the dynamical response to small perturbations. The fact that these
two matrices are equal in our model system imply that the timescales of the
dynamical response and the fluctuations are the same. Before moving on to
experimental results, we will take some time to explore the generality of this
connection.

When we write rate equations like (3.3.1) - (3.3.3) we are making some
implicit approximations. First, we approximate the occupation numbers of the
levels, such as N and N, as continuous variables, when they are in fact discrete

variables. Second, we approximate the discrete and random transitions between
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levels as continuous and deterministic “flowsO. To understand the implications
of these approximations, we start by deriving a differential equation for the
expectation values of the level occupations from the master equation (3.3.6). We
find the following system of equations:

J

Z M= Lo {2V )~ (P ))) (3.3.17)

jri

where the indices i and j run over all levels. We can compare this equation to a

general expression for the rate equations (similar to (3.2.15)), which is

‘g‘,N = ;&li(p/i(N D=p,ND), (3.3.18)
The only apparent difference is that we have dropped the expectation value
brackets from the second system of equations. But, we must also keep in mind
the subtle difference that the first equation is an exact differential equation for the
continuous expectation value of a discrete variable. The second equation is only
approximate for the reasons mentioned above.

However, in the special case where the [Pq(N )} are all linear functions of
the occupation numbers,{N,}, we then have that{p, (N )= p;({V;)) and we can
actually interpret the rate equations as exact equations for the expectation values
of the occupations of the levels. In many physical systems, although, the
transition rates are at least quadratic in the occupation numbers, such that, p;; ~
N;or p, ~ NN, In this case, we have, for example, that

(p,)~(N2)=(N,)’ +(aN7). (3.3.19)
So, in the case of quadratic transition rates we can interpret the rate equations as
approximate equations for the expectation values, ignoring terms of order the
variance of the occupation number. In general though, we expect that
(AN} ) ~(N,) and we can say that neglecting the variance terms is a valid
approximation to order O(1/N). Thus, for a large system the rate equations
actually describe the expectation values of the occupation numbers, to good

approximation.
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We can develop this idea a little further. If we take (3.3.17) and Taylor
expand the transition probabilities to first order we get the following equation
for small variations:

%(AN Z&{Za"" Zap" ] =2 M, (AN,) (3.3.20)
(N 1=IN)

Jji k

where M, are the elements of the matrix M defined in (3.3.12). If we follow the
same procedure for the rate equations, and we find that the linearized rate
equations:

’"AN Z&’[zap" Z AN ] =20V (3321

s PARE AR

where have defined the linearized rate matrix I. We see, in general now, that I =
M and that we can interpret the linearized rate equations as equations for the
expectation values around equilibrium. This is the general connection between
the fluctuations and the dynamics. The eigenvalues of I' determine the
dynamical response of the system to perturbations. The eigenvalues of M, in
turn determine the characteristic times of the fluctuations. But, as we have just
seen, the matrices are the same. Thus, the timescales measured from dynamic
perturbations and from equilibrium fluctuations must be the same.

The proceeding discussion amounts to a statistical fluctuation-dissipation
theorem for our system. In fact, we can derive the fluctuations of our system ina
more conventional thermodynamic framework using the fluctuation-dissipation
theorem [van Vliet 1965]. We start by considering the entropy function of our
system, S(E,Vol,{N}), which is a function of the extrinsic thermodynamic
variables, {a;}, which are in this case the energy, E, the volume, Vol, and the
particle occupation numbers, {N.}. We can then define the intrinsic

thermodynamic variables of the system as

g3

2, (3.3.22)
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In particular, for the extrinsic variables {N,}, the corresponding intrinsic variables
are (-, / T}, where y,_is the chemical potential of k-th species of particles and T is
the temperature. We can then approximate the probability of finding the system
in a state a around the equilibrium state a° as
1
P(@)=Cex —I,z_,;sga‘ajil (3.3.23)

where C is a normalization constant, . = a, - a? and we have introduced

§0 7S

i aa‘aaj (3324)

The note that the matrix sii° arises from the Taylor expansion of S(a) around the
equilibrium state a’, where S(a) takes on its maximum value. We also note that

we can approximate the change of the intrinsic variables around equilibrium as

AX,=X,@)- X! =-2 50, , (3.3.25)
J

It is then straightforward to show that the variances of the fluctuations of the
intrinsic variables are

(@a)=ky(s"), - (3.3.26)
We can understand this result in a straightforward fashion. The matrix s° is the
curvature of S(a) around its equilibrium value. We then see that the magnitude
of the fluctuations is inversely proportional to the curvature of S(a).

Before we derive the frequency spectra of the fluctuations in this
framework, we must introduce some concepts. If we consider S(a) as the
thermodynamic “potentialO for our system, in the sense that its maximum value
and curvature determine the equilibrium behavior of our system, then we can
consider its derivatives, the intrinsic variable {X}, as thermodynamic “forces.O
We can then postulate a kinetic connection between our extrinsic variables and
their corresponding forces. In steady state, the total thermodynamic force on the

system must be balanced by dissipation in the system according to the relation

(X o = E_Ra-d,- (3.3.27)
J
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where R, is the generalized resistance matrix and the dot indicates the derivative
with respect to time. (The elements R, are also known as Onsager coefficients.)
We can split the total force in (3.3.27) into an external “driving force” V(t), acting
on the system through the reservoir, and the internal restoring force, the intrinsic
variables X.. We can then rewrite (3.3.27) as

V() =s'a+Ra- (3.3.28)
where have changed matrix notation for convenience. If we take the Fourier
transform of (3.3.28) we can characterize the response of the system to the

external perturbation by the frequency dependent impedance matrix

0

Z(®) =R+ (3.3.29)
1w

where o is the angular frequency. According to the fluctuation-dissipation

theorem, the power spectrum matrix is then

o \!
G(w)= 4k, Re(Z ") = %R:{(R + s_] } (3.3.30)

>
w lw

This thermodynamic treatment is complete. The fluctuations can be calculated in
this way, without appealing to the master equation formalism, if the entropy
function can be derived and R can be deduced from (3.3.27).

We can, however, connect the thermodynamic result to the master
equation approach. If we eliminate the external drive term from (3.3.28) we

arrive at an equation for the intrinsic relaxation of the system:

a=-R'a (3.3.31)
If we compatre this to (3.3.20) we find the first connection
M=R"s" (3.3.32)
Comparing eqns. (3.3.10) and (3.3.26) for the variance of the fluctuations, we find
k(s') ' = %M“B, (33.33)
Combining this result with (3.3.32) we find the final connection
R'=—_B, (3.3.34)
2k,
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Using (3.3.32) and (3.3.34) it is then a matter of simple algebra to show that the
spectrum (3.3.30) is the same as the spectrum (3.3.11) derived using the master
equation approach.

Thus, we see that behavior of our system can be derived either from a
strictly thermodynamic point of view or through the master equation. We also
see that the results of the two approaches are related in a simple fashion. This
fact is important in and of itself, because it implies that important
thermodynamic quantities can be deduced with only knowledge of the rate
equations of a system, which may be easier to deduce than the entropy function,

S(a), or the Onsager coefficients, R.

3.4 Experiment

When we apply a bias voltage across our tunnel junction, the fluctuations
of the number of thermal quasiparticles in the electrodes lead to excess current
noise in the detector. At large bias, there is a simple connection between the
number of quasiparticles in the box and the current. In Fig. 3.3, we show
quasiparticles distributed in an energy range SE in the Al. (For a thermal
distribution, 3E is a few times k,T.) Each quasiparticle is a coherent
superposition of electron and hole, but it must tunnel as either a pure electron or
pure hole. Biased at a voltage eV > SE, a quasiparticle can only tunnel from left
to right as an electron, gaining energy eV. A quasiparticle cannot tunnel from left
to right as a hole, because it would lose energy eV and tunnel into the gap on the
right side. Similarly, quasiparticles can only backtunnel from right to left as a
hole. Thus, for eV > SE, tunneling events from left to right and from right to left
transfer a charge in the same direction and the associated currents add. The

time-dependent current is then given by

1o = 1N(t N(z)) Nr(t)

tun

(3.4.1)
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Figure 3.3 Current-voltage characteristics of the tunnel junction. The solid lines are I-V curves

from device 1 that show the effect of heating. The long-dashed line is an I-V curve from a

similar junction, device 2, without heating effects (see text). The short-dashed lines are BCS

predictions. The low temp BCS curve and the curve from device 2 overlap. The inset is an
energy band diagram of device 1 in the excitation representation.

T

where N, and N_ are the numbers in the left and right side and 1, is the tunnel
time [de Korte 1992]. The tunnel time here is twice the normal metal tunnel time
because only half the tunneling processes are allowed. In writing (3.4.1) we have
assumed that any variations in N(t) happen on a time scale ©>>1,,. As we will
show later, the time scale of the fluctuations of the quasiparticles meet this
condition.

At first, it might appear that the tunnel barrier divides the box into two
distinct quasiparticle systems. However, it is a good approximation to treat the
two halves as one box if the halves are strongly coupled. This condition for
strong coupling is that t.* >> T, where 7.* is the effective recombination time
for the quasiparticles. If this condition is meet, a typical quasiparticle tunnels

many times before it recombines and can interact with quasiparticles in both
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halves of the box [Gray 1978]. In our measurements, n = T.*/ 1, is between ten
and fifty, so that this strong coupling condition is always meet.

To measure the quasiparticle number with a tunnel barrier, we must use a
voltage eV > 8E. This introduces the problem of Joule heating. Each tunneling
event dissipates eV of energy in the Al box, as seen in Fig. 3.3. In a tunnel
junction with large Al leads the energetic quasiparticles diffuse away from the
barrier and are replaced by “cool” quasiparticles from the leads. In our system,
however, the energetic quasiparticles cannot diffuse away from the barrier
because of the large-gap Ta leads. Thus, non-equilibrium heating occurs in the
quasiparticle gas, including the generation of excess quasiparticles. Fig.3.3
shows current-voltage (I-V) curves from two different devices along with
theoretical BCS I-V curves. Device 2 (OPS-E00-7A) has a Ta lead only on the left
side, so hot quasiparticles can diffuse away from the junction on the right side.
Its [-V curve represents the behavior of a junction in equilibrium at the bath
temperature and is quantitatively consistent with BCS predictions. The current
of device 2 also scales with the junction area when compared to larger junctions
we have made with one Ta lead. Device 1 (OPS-E00-6B), which has Ta leads on
both sides and is used in the rest of the measurements in this section, shows
excess current compared to device 2. The explanation for the excess current in
device 1 is Joule heating, as described above (and in more detail in section 4.1).

We directly measure the recombination time of quasiparticles in the box
with single-photon absorption experiments [Wilson 2000]. A single photon from
the mercury emission line at 4.89 eV (254 nm) is absorbed in the Ta on the left of
Fig. 3.3, producing about 4000 quasiparticles. These quasiparticle diffuse to the
Al where they can emit phonons and drop down in energy, becoming trapped.
These trapped quasiparticles are a small perturbation to the N, ~ 10° steady-state
quasiparticles in the Al box. The trapped quasiparticles circulate, tunneling and
backtunneling, until they are lost to recombination, typically with a thermal
quasiparticle. This produces a current pulse that decays exponentially on a time

scale of the effective recombination time, T.*.
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Eqn. (3.4.1) implies that the fluctuations in the number of quasiparticles
will cause fluctuations in the tunneling current with a spectral density

5,(v)= 4nel® - 2(oz,rl)e1°2

l+(o,) 1+ (an‘k)

(3.4.2)

where I is the steady-state current, n = T,*/7,, is the average number of times a
quasiparticle tunnels before recombining, and the parameter @, is defined in
(3.3.14). We predict o, = 2 in Al at these temperatures. We have written the
spectrum in this form to recall the magnitude of S,(v = 0) for Poisson shot noise of
a tunneling current [°, namely, S(v=0)=2q, I% where g is the effective charge
of the current carrier [Blanter 2000]. Equation (3.4.2) looks like a shot noise
spectrum with an effective charge q /e = o,n. Our model predicts q_,~ 100e at
the lowest temperature. Poisson shot noise arises from the random timing of
tunneling events. At high frequency we expect to recover the result
S,(v>>1/1.*) = 2e I’ in our junctions.

An additional source of noise could be a fluctuating charge imbalance
between the hole-like and electron-like quasiparticle branches [Tinkham 1996].
In Al away from T, these fluctuations would be caused by quasiparticles
randomly switching branches after scattering elastically from an impurity
[Clarke 1986]. The branch mixing time in Al is of order 1,~10%s [Clarke 1986],
much faster then either the tunneling time, T,_~10%s, or the effective
recombination time 7. *~10%s. This means that charge imbalance fluctuations
should be averaged out in our measurements. (In addition, 1, should be
independent of temperature in our operating range, compared to the exponential
temperature dependence of t.*.)

We have measured both the exponential falltime of single-photon pulses
and the frequency spectrum of the current noise at different temperatures, as
shown in Fig. 3.4. All measurements were made with the tunnel junction biased
at V =60 uV. The current pulse shown is the average of 500 single-photon

current pulses. The decay is fit with a simple exponential to give one
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Figure 3.4 Spectral density, S(v), of the tunneling current with a fit to the Lorentzian form
(3.4.2). The inset is the average of 500 single-photon current pulses showing the decay with a fit
to an exponential. For clarity, only a few percent of data points are displayed. T=032K.

measurement of 7.*. The spectrum is the average of fast Fourier transforms of
successive noise traces recorded with a digital oscilloscope. We fit a Lorentzian
shape like (3.4.2) for a second measurement of t.*. Before fitting we digitally
subtracted known electronic noise sources and removed lines caused by 60 Hz
pick-up and microphonics. There is an additional white noise component that
does not change with temperature and is about a factor of 15 less in power. We
believe it is a combination of the conventional noise from pair and quasiparticle
tunneling [Rogovin 1974]. The rise of the spectrum at very low frequericy is due
to the 1/f noise of the amplifier.

In Fig. 3.5 we plot both measurements of I';* = 1/1;* versus the average
number of quasiparticles in the box, N(T). N%(T) is inferred from the average
current using (3.4.1). Each N°(T) corresponds to a different bath temperature,
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Figure 3.5 Data for the effective recombination rate, I'.%, and the low-frequency spectral density,

S(v=0). [*was determined from the bandwidths of the spectra and the falltimes of the
current pulses (Fig. 3.4).

between 0.21 K to 0.32 K. For the lower values of N° (T), the effective
temperature of the quasiparticle gas was significantly higher than the bath
temperature (refer to Fig. 3.3). The values of I';* inferred from the noise and the
single-photon measurements agree, confirming the connection between the noise
and the dynamics of quasiparticle loss. The solid line in Fig. 3.5is a least squares
fit to the total data set and is not constrained to zero intercept. We see that I';*
varies linearly with N°(T) and that the intercept of the line is very close to zero.
These properties confirm that the loss rate I';* is in fact due to quasiparticle-
quasiparticle recombination, as opposed to loss in traps, etc. [Gray 1971,1981].
The quality of the fit suggest that despite the fact that at the lowest bath
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temperature the quasiparticle gas is heated, it is behaving like it is in internal
equilibrium at an effective temperature higher than the bath temperature. (The
number of quasiparticles present at the bath temperature imply an effective
temperature of T , = 0.26 K.)

The theory also predicts how the low frequency magnitude of the noise,
S(v = 0), should change as a function of temperature. Referring to (3.2.2), all
factors in the magnitude of S (v = 0) are approximately independent of
temperature except I° and 7.*. I and 1.* both change with temperature because
the number of quasiparticles changes. Specifically, I ~ N° and t.* ~ 1/ N°. Thus,
the product It.* is independent of N° (temperature) and therefore, 5(v = 0)
should be independent of temperature. The right axis of Fig. 3.5 shows 5(v = 0),
determined by fitting the spectra with (3.4.2), plotted versus N°. We can see that
there is no significant dependence of S(v = 0) on N°. Finally, the theory predicts
the absolute magnitude of S(v = 0), or equivalently the parameter o from (3.4.2).
We measure a value o, = 1.8 +/- 0.2. This agrees well with our model prediction
of &, = 2. The uncertainty quoted is one standard deviation of o, and is
dominated by the uncertainty in our knowledge of the electron density of states
at the Fermi energy, D(g,) [Friedrich 1997a].

An alternate explanation for the noise is that there is a flux of stray
microwave or infrared photons incident on the device. The photons could come
from the blackbody radiation of the dewar or from electromagnetic interference
coupling down the leads to the device. If these stray photons have an energy E, >
2A, then the photons will produce small single-photon pulses that are not
individually resolved but still contribute noise [LeGrand 1997]. The frequency
dependence of this noise would be the same as the fluctuation noise, so the data
of Fig. 3.5 do not distinguish between these hypotheses. However, the change in
the low frequency magnitude of the noise, S(v = 0) as a function of temperature
should be very different for the two noise sources. We expect the low frequency
magnitude of noise from stray photons to be

56



.
S,(v=0)= Zﬁfel, (3.4.3)

tun

where [ is the photon induced current and B is a factor that accounts for the
creation of quasiparticles in bunches by the photons. If the photons are
monochromatic, then B would be the average number of quasiparticles created
by a photon [LeGrand 1997]. Although this looks similar to (342),Lis
independent of temperature. Thus, S, should vary with temperature, being
proportional to t.*. The lack of such a dependence in Fig. 3.5 supports the
interpretation that the noise is caused by thermodynamic fluctuations and not
stray photons. In addition, the fact that our measurement of the parameter a
agrees with the thermodynamic prediction of o, =2 suggest that stray photons do
not cause the noise. If the noise arose from stray photons we would in general
expect ¢, to be much larger (of order the average number of quasiparticles
created by each photon). Finally, we have repeated our measurements of the
noise in a different cryostat, in a light-tight copper sample holder only connected
to room-temperature through SMA cables with cold, copper-powder rf-filters.
The sample holder and the copper-powder rf-filters were all at the bath
temperature. We observed no change in the noise under these conditions. These

facts taken together conclusively rule out stray photons as the source of the noise.
3.5 Discussion

In principle, the fundamental time scale of electron-phonon interactions,
known as t_, can be inferred from measurements of quasiparticle-quasiparticle
recombination. The parameter t_is material dependent and is of general interest
because the rate of many processes related to the interaction of electrons and
phonons are determined by it [Kaplan 1976]. In particular, for a pair of
quasiparticles at the gap edge, the expression for the recombination constant is

o[ 2 P 151
k,T. ) 2AD(e, )T, (3-3-1)
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Figure 3.6 Comparison of quasiparticle lifetime measurements in this dissertation to previous

measurements [Gray 1971]. Measurements by Gray were of Al on sapphire with A = 195 uV. Our
films are on Si0, with A = 180 uV. Our data shows the lifetime following the theoretical depen-
dence to lower temperature.

However, extracting t_ from recombination measurements at temperatures much
less than T_ is complicated by phonon trapping. In fact, in the limit of strong

phonon trapping, the measured recombination rate [* becomes

I

Al ~ T (3.5.2)

r;=2-%
R FB



because the pair-breaking rate, [, is also proportional to 1/1,. Thus,
measurements of [';* in the presence of strong phonon trapping have no
dependence on . If we were to ignore phonon trapping for the moment and
insert our measured value of R into (3.5.1), we would extract a value for T, of
1.65 ps. Numerous measurements of 7, in Al by other methods insensitive to
phonon trapping find values of order 100 ns [Chi 1979, [Gray 1981]. This
discrepancy suggests that our measurements are, in fact, in the limit of strong
phonon trapping, so that they do not provide any independent information
about t. Our measurements do, however, confirm that the quasiparticle
recombination rate is proportional to the quasiparticle density at lower
temperatures and longer recombination times than previous experiments (refer
to Fig. 3.6). Previous measurements showed recombination times that begin to
deviate from the expected dependence at T ~ 400 mK and t,* ~ 20 ps and
completely saturate at a maximum value of t,* ~ 80 ps below T ~ 300 mK [Gray
1971]. Quasiparticle loss into normal-metal regions created by trapped flux was
proposed as the explanation for the deviation from theory in those
measurements, although this explanation was not experimentally tested.
Therefore, our measurements extend the range over which the basic physics of
recombination has been verified in Al.

Current noise caused by fluctuations in the number of carriers has been
observed previously in semiconductors. The term generation-recombination
noise is commonly used to describe this noise. The treatment of the noise is
quantitatively and qualitatively different for semiconductors. First of all,
electrons in semiconductors recombine with holes, not other electrons.
Quasiparticles in a superconductor combine with other quasiparticles. This
difference significantly affects the statistics. In addition, the effect of non-
equilibrium phonons, which is very important in thin-film superconducting
devices, has not been treated in semiconductors.

From a technological point of view, generation-recombination noise may

be more relevant to superconducting devices than to semiconductor devices. In
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intrinsic semiconductors, it is straightforward to cool devices to temperatures
where there are no thermal excitations, so that the noise vanishes. Conversely, in
extrinsic semiconductors, room temperature is sufficient to fully excite donors
and acceptors, so that the noise is again suppressed. Neither of these condition is
generally true in superconducting devices.

The effect of the fluctuations we have presented here imposes a previously
unknown “thermodynamic limit” for superconducting tunnel junction (ST
photon detectors. Previously, it was believed that only the statistical noise of the
backtunreling process should limit the energy resolution for this type of ST]
detector. The standard deviation of the backtunnel process, called the
“backtunneling limit”, is (Ny)” 2 referred to N, the average number of
quasiparticles created by an incident photon. On the other hand, the new
thermodynamic limit we propose for this type of detector is (o, N°/2)"/? referred
to N,. Basically, we see that the fluctuation of the thermal quasiparticles will
degrade the energy resolution compared to the backtunneling limit if N°>N.. This
is the case in our measurements, where N°= 5N in the best case. In our detectors,
the backtunneling limit represents an energy resolution of about 0.2 eV referred
to 5eV ultraviolet photons. On the other hand, the thermodynamic limit, using
a, = 1.8, is 0.45 eV independent of energy. We measure between 0.4-0.47 eV at
from 2-5eV [Wilson 2001a]. This result is surprising. It had not been previously
understood that backtunneling multiplication would also effectively multiply the
shot noise due to thermally excited quasiparticles. It was believed that
backtunneling could increase the signal of the detector over the noise of thermal
quasiparticles to the point that the detector should be limited by the
backtunneling noise of N,. This is clearly not the case. This generation-
recombination noise could, in principle, be reduced by lowering the temperature
of the junctions. However, this may not be straightforward since our lowest

temperature is largely determined by self-heating and not the bath temperature.
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Chapter 4: Physical Noise Processes: Master Equation Applications

4.1 The Master Equation

In Chapter 3, we derived expressions for the thermodynamic fluctuations
of the quasiparticle number in our tunnel junctions using the master equation
formalism. The master equation formalism itself is very general and can be
applied to noise and fluctuations in a wide variety of physical systems. In this
chapter we will apply the master equation to potential noise sources in our
detectors: shot noise of a finite electrode and self-recombination. The standard
derivation of shot noise in a tunnel junction assumes that the electrodes are ideal
quasiparticle reservoirs. In our devices, however, the trap electrode is actually a
small, isolated quasiparticle system. We expect that the random nature of the
tunneling process itself will lead to fluctuations in the number of quasiparticles
in the trap and, therefore, to excess current noise. Self-recombination is the
process of two photon-excited quasiparticles recombining in the ST]. Itis distinct
from thermal recombination in which an excited quasiparticle recombines with a
thermal quasiparticle. When the density of excited quasiparticles is high enough
that a significant number of excited quasiparticles are lost to self-recombination,
the response of the detector becomes nonlinear. In addition, self-recombination
is a random process and should add noise to the detector. For both of these
reasons, self-recombination imposes an upper limit on the useful energy range of
an STJ.

As an introduction to the general application of the master equation, we
start by considering a very simple system. We consider a one level population
subjected to a linear loss process. A physical example of this would be thermal
recombination of excited quasiparticles. In Chapter 3, we used a linearized
equation to solve for fluctuations around an equilibrium value in our system.

This example will illustrate that the master equation can be used to derive the
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complete time evolution of a probabilistic system. We start by writing the master
equation for this system:
IP(N,{N°.0)

o
where N is the number of quasiparticles and /[(N) = [N is the loss probability per

=—I(N)- P(N.N°0) + [N +1)- PN +LeN°.0)  (41.1)

unit time. The interpretation of this master equation is completely analogous to
(3.2.1), except that there are no generation terms in this equation. If we multiply

this equation by N and sum over all possible N, we get an equation for the

expectation value of N:
d
Z(N)vo =-T(N),. 4.12)
which has the straightforward solution
(N),o = N%exp(-Tt). 4.1.3)

This is the result we expect, namely, the number of quasiparticles decays
exponentially with a characteristic time 1/T.

As we discussed in Chapter 3, the result for the expectation value of N
could have been derived by writing down a standard rate equation. What is
unique about the master equation formalism is that it allows us to also derive the

time evolution of the variance of N. Due to this, we multiply (4.1.1) by

-

AN*=(N -(N))2 and sum over all values on N. We arrive at the following

equation for the variance:
d
ar

This differential equation is slightly more complicated because it involves not

(AN?) , +20(AN%)  =T(N),.. (4.14)

only the variance, (AN 2) 4o- but also the expectation value, (N),.. However, since
we already have an explicit solution for the expectation value, we can solve
(4.1.4) for the variance treating the expectation value as a “drive” term. If we
assume that variance at t=0 is zero, meaning that the initial condition is known
exactly, we get the following expression for the time evolution of the variance:

(aN?) , = Nexp(-Tr)(1-exp(-T1)) =N°p,(1-p.) (4.1.5)
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where we have defined p, = exp(-I't). We can interpret this result in an
interesting way. Basically, if we take a snap shot of the system at time t, the
statistics of the system are described by an “instantaneous” binomial distribution

with p, as the instantaneous probability that a quasiparticle has been lost.
4.2 Self-Recombination

Self-recombination is the process of two photon-excited quasiparticles
recombining to form a Cooper pair. It is one of several potential sources of
quasiparticle loss in ST] detectors. It is similar to thermal recombination where
an excited quasiparticle recombines with a thermal quasiparticle. In fact, the
microscopic quasiparticle-quasiparticle interaction is identical in the two
processes. We distinguish them because they have different effects on the
response of the STJ. When the density of excited quasiparticles is much less than
the density of thermal quasiparticles, the excited quasiparticles are much more
likely to be lost to thermal recombination. Thus, the recombination probability is
independent of the number of excited quasiparticles. ThlS implies that thermal
recombination is a linear loss process with respect to the detector response; it
removes the same fraction of excited quasiparticles independert of incident
photon energy. On the other hand, if the density of excited quasiparticles is
much greater than the density of thermal quasiparticles, self-recombination is
much more likely. In this case, the recombination probability is a function of the
number of excited quasiparticles. Thus, self-recombination is a nonlinear loss
process, meaning that a larger fraction of excited quasiparticles will be lost at
higher incident energy.

Self-recombination may imposes a practical limit on the dynamic range of
an ST] detector. Besides making the response of the STJ nonlinear, self-
recombination is also a source of noise, due to its random nature. In this section,
we will assess how stringent a limit self-recombination places on the practical

energy range of an STJ. The noise associated with many loss and gain processes
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in an STJ can be calculated assuming that the process is binomial [Segall 2000].
This is not true of self-recombination. A binomial process is basically one where
repeated, independent trials of an event have a fixed probability of success. For
instance, thermal recombination of excited quasiparticles can be viewed as a
binomial process since the probability of any quasiparticle being lost is
independent of the fate of any other quasiparticle. On the other hand, for self-
recombination the probability that a quasiparticle will be lost at a given time
does depend on how many other quasiparticles have been lost.

We will consider self-recombination of quasiparticles in the trap electrode,
ignoring thermal recombination. Quasiparticles can either be lost to self-
recombination or they can tunnel to the counter-electrode. Quasiparticles that
tunnel to the counter-electrode add to the collected charge and we assume for
simplicity that they all diffuse away without backtunneling or reverse tunneling.
We will keep track of the number of quasiparticles left in the trap, N, , and the
number of quasiparticles that have tunneled and been collected, N_. We can

write the following master equation for this system:

9Py

> ,mp,Nm,,.t) ==T(N,g,)- P(N o N o) + TN, t+ D) PN, + LN, —Lt)

=r(N )" P(N ops N oo 1) + r(N,,, + 2)-P(N,,, + 2N 1)
(4.2.1)
where 7(N) and r(N) are the probabilities per unit time for tunneling and

recombination respectively. In equation (4.2.1) we have dropped the notation
indicating that the probabilities are conditional on a particular initial condition,
but it is implied. From this master equation we can derive the following

equations for the expectation values:

(¥ ) = (o) (Vo) 1)~ P Vo)

v (4.2.2)
= —T/-<N,mp> - r{or<N"’“P>
%(Ncoll) = —r"‘" (N‘mp> 423



where we have used

r(N LR

R.
"“’)_2 %

MgV =)+ TWNo))=TaaVoy 3 D=l = (424)

mn' Y trap

and V is the volume of the trap. Here we use the more complete expression for
r(N,, P) compared to (3.2.17) because we are also interested in the behavior of the
system when N is small. As discussed in Chapter 3, we have neglected a term
in (4.2.2) that depends on the variance of Nmp. The solution for the collected
charge with the initial condition of N° quasiparticles in the trap is

(Neu)=N° I;f“ '{1+ II:” ] (4.2.5)

R tot

where I', = R*N°/V.

The master equation formalism also allows us to write differential
equations for the variance of the occupation numbers. However, because r(N,, )
is quadratic in N, the equations involve (N ,’mp> Since we do not have a priori
knowledge about the relative size of (N ,3,,,,), we do not know if we can neglect
terms involving it. If we do not neglect those terms, solving the equations for the
variance entails also having to solve equations for (N ,J,up) However, the
equations for (N ,’,,,p> involve fourth order moments, etc.. Thus, we cannot solve
for the variance without having knowledge of the relative size of higher order
moments of the occupation numbers.

We instead calculate the variance using a Monte Carlo simulation inspired
by the master equation. The simulation involves explicitly calculating the time
evolution of our model system. We start with N° quasiparticles in the trap and
advance the simulation in small time steps. The time step is small enough that
the probability of any event, either tunneling or recombination, is small. (In
practice, the time step is constantly adjusted during the simulation to keep the
probability between 0.1 and 0.01.) At each time step of length dt the probability

of a tunneling event is calculated as
Pun = DNt (4.2.6)

65



where N, is the number of quasiparticles in the trap as a function of time. The
probability of a recombination event is
1R

Do = ET/—NW(NW -~ 1) (4.2.7)

and the probability of nothing happening is

Prothing =1~ Prec ~ Prun- (4.2.8)
At each time step a random number is drawn to decide what happens. A
tunneling event decreases N, by 1 and increases N_, by 1. Arecombination
event decreases N, by 2. This process is iterated until N = 0. At the end of
the simulation, we record the value of N_,. We then repeat the simulation from
the beginning with the same initial number, N°. Each repeated trial ends with a

different value for N_,. By repeating the simulation many times, we can

coll”
generate a distribution for N_, and find its mean and variance. In addition, we
can repeat the whole procedure for many different values of N to find how the
statistics of N_, change.

We display the results from one set of simulations in Figures 4.1-4.4. The
parameters that we have used in this simulation are R* = 3.36 um®/s, V = 4.4x10°
um?, and 1/T, =12.5 us. This value for R* comes from our measurements in
Chapter 3. The trap volume here is much smaller than any optical ST] would
ever be. We have used such a small volume strictly to reduce the computational
demands of the simulation. The computational time needed to complete the
simulation scales with the initial number of quasiparticles, N°. For a smaller
junction, self-recombination becomes significant for smaller values of N°. Thus,
it takes less time to simulate smaller junctions. In addition, equation (4.2.5)
implies that the functional form of the expectation values, at least, scale in a
simple way with the size, suggesting that simulating a small junction should
provide relevant information about larger junctions. This volume for the trap

electrode would roughly correspond to a junction area of 0.04 pm®, which implies
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Figure 4.1 Results of Monte Carlo simulation of self-recombination process. On the left axis, the
average value for the number collected is plotted versus the initial number in the trap. Plotted on
the right axis is the average fraction collected, which is an estimate of the overall probability that
a quasiparticle is collected. Results of the Monte Carlo simulation are plotted as markers while
theoretical values are plotted as solid lines.

an optimal maximum energy of about 0.01 eV according to Chapter 5. A photon
with an energy of 0.01 eV would create about 10 quasiparticles in the STJ.

In Fig. 4.1, we have plotted the mean N, versus NO from the simulation
and for the master equation results (4.2.5). The agreement is very good. We can
see that the nonlinearity introduced by self-recombination is not terribly strong.
In fact, extending the incident energy (initial number) 1 order of magnitude
above the “maximum” energy only reduces the collected fraction to about 70%.
In addition, to reduce the collected fraction to less than 10% requires increasing
the energy almost 3 orders of magnitude.

2 versus the

rel /

In Fig. 4.2, we have plotted the relative variance of N,/ O
fraction collected, which estimates the overall probability of being collected, p ;-
(The relative variance is the variance normalized to N°.) Along with the

simulation results, we have plotted the result for a simple binomial process,
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Figure 4.2 Relative variance of N_, versus the fraction collected. The results of the simulation are
compared to a simple binomial process.

namely, 6, 2=p_,(1 - p.,)- We see that this binomial result agrees when the
fraction collected is small, but disagrees significantly when the fraction collected
is large. In Fig. 4.3, we plot the ratio of the relative variance from the simulation
to the binomial variance, 6_2/6,,? versus the fraction collected. We have also
plotted a quadratic fit to the ratio. What we see is that the ratio smoothly varies
between about 1 for a small fraction collected and about 2 for a large fraction
collected. We can understand these limits in the following way. When p_,~1 the
probability of self-recombination is small and each recombination event is
approximately independent. Thus, we can approximate the process as a Poisson
process with a shot size of 2. When p_~0, the probability of tunneling is small
and we can approximate the process as a Poisson process with a shot size of 1.
To understand how important the noise due to self-recombination is, we
can compare its contribution to the noise due to creation statistics, the Fano limit.

Because self-recombination reduces the ST] charge output at the same time that it
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Figure 4.3 Ratio of the relative variance from the simulation to the relative variance of a simpie

binomial process. The result of the simulation is fit with a quadratic polynomial.

adds noise, we have to be careful when comparing the noise contributions. We
choose to refer the noise to the “input” of the ST], in other words, refer the
fluctuations of the number to the initial number created [Segall 2000]. We can

then write that the energy width due to self-recombination is

AE,, =SeE, ; S=—
pcnll

where E is the energy of the incident photon, € is the average energy to create

(1- pmu)(O.92 +0.30p,,, + 0-76173011) (4.2.9)

one quasiparticle and we define S as the self-recombination factor analogous to
the Fano factor, F. The coefficients of the quadratic term in (4.2.9) come from the
fit in Fig. 4.3. We can define the dynamic range limit due to self-recombination

as the energy where S=F, in other words, where the energy width increases by V2
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due to self-recombination. If we assume F = 0.2, we find that the dynamic range
limit corresponds to the energy where p_, =0.9. This implies that a nonlinearity
of only 10% increases the noise by 40%. Thus, we conclude that the noise due to
self-recombination is a much more stringent limit than that imposed by the
nonlinearity itself.

4.3 Shot Noise of a Finite Electrode

The current across the tunnel barrier of the STJ flows in discrete “shots” as
one quasiparticle after another tunnels. The time between each shot is random,
so that even though there is a well-defined dc current, the current actually
fluctuates if we look at short enough time scales. This phenomenon is called
“shot noise.” The standard derivation of shot noise in a tunnel junction assumes
that the electrodes of the tunnel junction are ideal quasiparticle reservoirs,
meaning that the tunneling does not perturb the occupation of energy levels in
the electrodes [Rogovin 1974]. In such an ideal junction, the shot noise arises
solely from the randomness in the timing of the shots. The trap of one of our
STJs is certainly not an ideal reservoir. On the contrary, the trap is a finite (even
small) quasiparticle system that is largely isolated by the Ta absorber. We expect
that the number of thermal quasiparticles in the trap will fluctuate due to
tunneling, possibly giving excess current noise. We note that this noise is related
to the background of thermal quasiparticles. Atsufficiently high bias voltage,
tunneling of excited quasiparticles does not add charge noise [Segall 2001].

We can calculate the fluctuations of the quasiparticle number in the trap
by simply applying the formulas of Chapter 3. We assume the junction is biased
at a sufficiently high voltage such that quasiparticles can only tunnel as electrons
from the trap and can only backtunnel as holes from the counter-electrode to the
trap. For now, we will also assume that the counter electrode is an ideal reservoir
such that the probability per unit time of a backtunneling event is constant. To
apply the formulas of Chapter 3, we map this tunneling problem toa 1 variable
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generation-recombination problem. The one occupation number isN,_. With
respect to N, we see that tunneling from the trap is equivalent to
recombination and backtunneling to the trap is equivalent to generation. We can
therefore write the “recombination” probability per unit time, r(N,, p), and
“generation” probability per unit time as

r(N,mp) 0Ny 5 8(Nip) = [..No, (4.3.1)
where g(N___ ) is just a constant equal to the average value of r(N,, ). We can then
apply equation (3.2.6) to calculate that the variance of the fluctuations is
(AN?,)=N¢,,. In addition, can apply (3.2.13) to calculate that the power
spectrum of the fluctuations is

0
G(w)= %;i)- (432)

wheret, =1/T .

We now want to calculate the excess current noise generated by these
number fluctuations. In Chapter 3, we calculated the current noise by assuming
that the tunneling current instantaneously followed the fluctuations of the
number. We made that assumption in that case because the time scale of the
number fluctuations was much longer than the tunnel time. That is clearly not
true here. Still, if we follow the same procedure here we find the following

excess current noise spectrum:

2el’
S(w)y=——=
! I+ (@) (4.3.3)

While this result is attractive in its simplicity, the preceding discussion does not
properly motivate it.

We can, however, give a rigorous proof of the form of the noise spectrum
in the following way. We start by considering a tunnel junction that has two
finite electrodes which we still call the trap and counter electrode. We now
consider the tunneling current produced by adding a single quasiparticle in our
system. The quasiparticle will tunnel back and forth between the two electrodes
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producing a delta function of current each time it does. After backtunneling
from the counter electrode to the trap, the quasiparticle will remain in the trap
for a characteristic time T = 1/T,_ before tunneling again. Similarly, after
tunneling to the counter electrode, the quasiparticle will remain there fora
characteristic time .. =1, (V/ Vmp). Thus, the tunneling current is described
by two intermixed Poisson processes. We can calculate the noise spectrum of
such a process for arbitrary values of the ratio V ./ VmP [Devoret]. However, we
are only interested in the limit V/ Vlrap >> 1, because it is in this limit that the
counter electrode behaves as an ideal reservoir. In this limit, we find that the

noise spectrum of this current is

S(w)=4e’ Lonlce [1+ ! ~
rrun + I'-‘CEL 1+ ((UT‘M)-

oV : (4.3.4)
= 4e'I‘,w, P [l + l 5 :|
Vi +Ves | 14(007,,,)’

Now we imagine that the electrodes are filled with a uniform density of
quasiparticles, such that the total number in the system is N, = (Vo + Vo)
where nC is the density. If we assume every quasiparticle is independent, then
each one will produce a tunneling current identical to what we have just
described. We can then simply add the noise contributions of all the
quasiparticles to find the noise spectrum of the filled electrode, S(w) =N_S,(w).
We find:
2 1
S ()= 4e'n°V,mpI"m[l + 1T(w't_m,,—)-J

{ ! } (4.3.5)
=2e[| 1+ ————
1+ (w7, )

remembering that I' = 2en’V,_ ' because the average current from the counter
electrode must balance the average current from the trap. At high frequency, this
spectrum is that of a standard shot noise process. However, we see that there is

also excess noise at lower frequencies with exactly the form (4.3.3).
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To help confirm this result, we can also calculate the current noise
spectrum using a Monte Carlo simulation. We can easily simulate the
fluctuations of N, in an analogous way to the previous section. In addition, we
simulate the current noise in the following way. First of all, we keep the time
step of the simulation, dt, constant. At each time step we calculate the time-
dependent probability of a tunneling event as p,, = [N, dt. The probability
of a backtunneling event is p,,, = N, ’dt and is constant. The probability
that nothing happens is P, i, = 1 = Pyack ~ Peun® Again a random number is drawn
at each time step to decide what happens. In this case, we keep track of two time
series. The first is Nmp(t) and the second is I(t). A tunneling event decreases N.. o
by 1and adds a delta function of current (with an integrated area ofe-) to I(t). A
backtunneling event increases N by 1 and also adds a delta function of current
to I(t). If nothing happens in the time step, N, does not change and I(t) is set to
zero. We run the simulation for a certain number of iterations and at the end
calculate the power spectrum of the number fluctuations and the current noise
using the fast Fourier transform (FFT). We can also repeat the simulation many
times, producing different time series each time, and average the resulting power
spectra.

As a test of the simulation’s ability to properly simulate the current noise
spectrum, we can run it holding both the tunneling and backtunneling
probabilities constant. With this constraint, the simulation should produce a
white shot noise spectrum. We have plotted the output of this test in Fig. 4.5.
The parameters of this simulation were N_ p" =500, 1, =25 s, dt =250 ps,
iterations=2%~106 and 1000 averages. With these parameters the probability of
tunneling and backtunneling events are p, =P, =0-05- We see that the
simulation does indeed produce a white noise spectrum. However, the
magnitude is somewhat too small. The expected value is S=2e[’=2.05x10%. We
instead find that the magnitude is S=1.85x10%. We see that the magnitude is low
by 10% and note that this percentage is similar to the total probability of a shot in
each time step, P, = PrtPos Thus, we could make an empirical guess that the
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Figure 4.4 Simulated and calculated power spectrum of the fluctuations of the number of quasi-
particles in the trap. The average number of quasiparticles in this simulation was 500.

error in the shot noise power of the simulation is first order in p,, ,. This is
reasonable because if p, , = 0.1 it means that dt is one tenth of the average time
between shots. Thus, the “granularity” of our time axis is about 10% and the
timing of the shots is only random at a 10% level. We could decrease dt to
decrease the granularity of the time axis. However, we would also need to
increase the number of iterations in the time series (and therefore computational
time) to keep the total time, T = iterations*dt, constant. The total time of the
simulation sets the frequency resolution of the spectrum, i.e., df =1/T. The
frequency resolution also determines the minimum observable frequency and we
need to have df << I, if we want the simulation to reveal any interesting
features.

With some understanding of its computational limitations, we can move
on to the full simulation. We have run the simulation with the same parameters

as above but now allowing N, _and p,, to vary in time. (We also increased the
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Figure 4.5 Power spectrum of current noise simulations. We have plotted the spectrum gener-

ated when N__ is held constant and when it is allowed to fluctuate. The average number of
quasiparticles 1s 500 in both cases.

number of averages to 10,000.) In Fig. 4.4 we have plotted the resulting power
spectrum of the number fluctuations of N, along with the exact theoretical
curve (4.3.2). We see that they agree well in both magnitude and shape. If we
integrate this curve we should obtain the variance of the fluctuations Ny, =500
We find in fact 490, which is about a 2% error.

In Fig. 4.5 we plot the power spectrum of the current fluctuations. We see
that the magnitude of the noise at high frequency agrees well with the output of
the standard shot noise simulation, matching the 10% error. We also see that
there is definitely excess noise below a characteristic frequency. To extract how
much excess noise there is and what its characteristic frequency is, we fit the

spectrum with the following curve:

0
SFiI (w;Tv Hv L) = L g eI 2 + H ¢ elo (4.3.6)
1+ (1)
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where the fitting parameters are T, L, and H. The fit is displayed in Fig 4.5 and
the parameters extracted are t=2.5us =1, L =1.95, and H = 1.8. The difference
in H from the expected value of 2 agrees with the 10% we observed for the shot
noise simulation. We see that simulated excess noise also agrees well with the
predicted spectrum (4.3.5).

The form of the calculated spectrum (4.3.5) is independent of N 7. To see
if simulation reproduces this behavior, we can lower the average number of
quasiparticles in the simulation. In particular, we have run the simulation with
the parameters N, ° =1, 7, =25 us, dt = 12.5 ns, iterations = 2'° ~ 32,000 and
1000 averages. We note that here p__° = p,., = 0.005 despite the fact the dtis
much larger and the number of iterations is much smaller. This is true because
Ny i5 80 much smaller. We plot the current noise spectrum for this simulation
in Fig. 4.6 along with a fit to (4.3.4). The parameters for thefitt=25us=1_,

L =198 +/-0.02, and H = 1.975 +/- 0.0005, where the errors quoted are the
uncertainties in the fit. We see that the magnitude of the high frequency part of
the spectrum is off by 1%, which is what we expect because p,;,, = 0.01. Wealso
see that the shape of the excess noise agrees very well with (4.3.5). In fact, this
time L = 2 within the error of the fit. Thus, the shape of the simulated spectrum
is not sensitive to the number of quasiparticles.

We conclude that the current noise of a tunnel junction with one finite
electrode is described by (4.3.5). The result is that for frequencies less than 1/
2nt__, the current noise power is doubled with respect to the noise from two
ideal electrodes.

We have not made an in-depth study of the current noise in our non-
backtunneling STJs. We do however observe that the current noise power, S
from these STJs is about 4 times what we expect for standard shot noise. Itis
possible that part of the excess noise is due to number fluctuations in the trap. If,
in addition, there is a tunnel barrier between the counter-electrode and the

wiring (see discussion in Chapter 5) number fluctuations in the counter-electrode
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Figure 4.6 Power spectrum of current noise simulation. The average number of quasiparticles in
the trap is 1.

could account for more noise. Detailed measurements of the noise spectrum

would have to be made to answer the question definitively.



Chapter 5: Device Performance

5.1 Device Types

We present measurements of several different types of devices. The most
important distinction is between backtunneling devices and non-backtunneling
devices. Backtunneling devices have a Ta plug interrupting the Al wiring of the
tunnel junction (refer to Fig. 1.1). The Ta plug prevents the diffusion of excited
quasiparticles away from the junctions, promoting backtunneling and charge
gain. Non-backtunneling devices omit the Ta plug, allowing excited
quasiparticles to freely diffuse away from the junction, minimizing
backtunneling. We have characterized both types of devices in the optical/UV
energy range. Another important distinction is between a device with imaging
capability and a single-pixel device. Imaging devices have two tunnel junctions
contacting opposite sides of a strip absorber and can resolve many spatial pixels
along the strip. Single-pixel devices have one tunnel junction contacting the
absorber.

The optimum size for the tunnel junction of an STJ detector is determined
by the energy range for which the STJ is intended. In general, the electronic noise
of the detector plus amplifier will be minimized by making the tunnel junction
smaller: a smaller junction has higher dynamic resistance, smaller capacitance
and less shot noise. On the other hand, if a junction is too small, excited
quasiparticles will recombine with each other (a process called self-
recombination) leading to a nonlinear response and excess noise. Thus, the
optimum junction should be as small as possible without leading to significant
self-recombination at the maximum energy. In the limit of weak self-
recombination, the fraction lost is

1 r, 1 2R'N ) _ E,
Sios —ZE—Z(—WI"}k D(e;)- Vol - Ryy) —O.O2A—J

78



where N, is the initial number of quasiparticles in the junction, R is the normal-
state resistance of the junction, E, is the photon energy in eV and A, is the area of
the junction in pm?. (In computing the numerical factor of 0.02 we have assumed
our standard critical current density of 30 A/cm?, a trapping multiplication of 2
and R* = 3.36 um?/s.) We note that the fraction lost to recombination is
independent of the electrode volume because both I';* and I are inversely
proportional to volume. We want the fraction lost to be less than f,_, = 0.1 so that
the noise due to self-recombination does not dominate other sources [Section 4.2].
This implies that the optimum tunnel junction size is 0.2 um?/eV. Thus, the best
tunnel junction size for a detector designed to cover the optical/UV spectrum
(up to about 5 eV) is 1 um? Unfortunately, producing a junction this small is well
outside the capabilities of our standard photolithography process. In fact, the
smallest junction area that we have been able to produce reliably is 100 pm?.

(The limiting step in the lithography process is lifting off the via in the SiO
insulating layer.) Thus, all of the measurements presented in this chapter were
done with 100 um? junctions. The shape of the junctions is a diamond with one
axis 20 pm long and the other 10 um long. Based on our lithography tolerances,
the smallest junction that can be made with this process is ~ 35 pum*. We have
made junctions this small with low yield, although we believe the yield could be
improved in the future.

5.2 Backtunneling Devices

The first devices that we measured were backtunneling devices. We
expected that the charge gain associated with backtunneling would help us
overcome the tremendous technical challenge of reading out the small charge,
Q, < 1fC, created by an optical/UV photon. Our designs did lead to large charge
gain in the devices. However, these devices also displayed excess current noise
and self-heating, as detailed in Chapter 3. For these reasons, these devices did

not ultimately provide good energy resolution. Still, measuring and
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Figure 5.1 -V curves of backtunneling device OPS-F99-6A after different laser warming cycles.

understanding these devices allowed us to refine our measurement setup and
techniques, laying a foundation for subsequent progress.

Figure 5.1 shows a set of -V curves for a 100 um? junction that is part of a
backtunneling STJ, device OPS-F99-6B. These measurements were all made ata
base temperature of 0.21 K. The most important observation is that the subgap
current is much higher and the dynamic resistance is much lower than what is
expected from BCS predictions. For the top curve, the subgap current at 100 uV
is about 12 nA, compared with a BCS prediction of about 1 nA. The dynamic
resistance is about 8 kQ, compared with the prediction of greater than 1 MQ. We
have made many junctions of this size and larger sizes that did show near BCS
behavior. There are many things, including junction defects and trapped flux,
that can lead to excess current in a tunnel junction. We are confident, however,
that the behavior of these devices is caused by self-heating of the junction. This
self-heating is a systematic property of our backtunneling geometry. At
sufficiently high bias voltage, V, a quasiparticles gains an energy eV each time it
tunnels. In a tunnel junction with no Ta plug, these hot quasiparticles can diffuse

away from the junction. However, in our backtunneling devices, these
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quasiparticles are confined on both sides by high gap Ta. Thus, all of the bias
energy is dissipated in the relatively small volume of the Al electrodes. This
causes the junction to heat above the bath temperature, creating excess
quasiparticles.

There are a number of empirical facts that suggest self-heating as the
source of the excess current. First, the junctions of all functioning backtunneling
devices that we have fabricated have shown this excess current phenomenon. In
contrast, junctions of non-backtunneling devices (without Ta plugs) fabricated on
the same wafers, all have I-V curves very close to the BCS prediction. There is
also evidence that the excess current is caused by the presence of excess
quasiparticles in the junction, as opposed to leakage or other things. As we
stated in the previous chapter, the recombination rate of excited quasiparticles is
linearly dependent on the number of quasiparticles. We have measured the
recombination rate of photon-excited quasiparticles at different bias voltages and
found that it depends linearly on the bias current. The recombination time
ranges fromt__ =180 usfor [, =43nAtot =80us for I =118 nA. (See
chapter 3 for a description of the measurement technique.) This implies that the
increase in current with increasing bias voltage is due to an increase in the
number of steady-state quasiparticles. The final piece of evidence is that we have
reprocessed some backtunneling devices, which had all shown the excess
current, and fabricated a second Al wiring layer on them that allowed the
quasiparticles to bypass the Ta plugs. The converted devices then all showed
currents and resistances close to BCS predictions.

At a microscopic level, we believe that the increase in the number of
quasiparticles is directly related to multiple tunneling. Most often, a
quasiparticle will tunnel only once before it scatters inelastically and emits a
phonon with energy E ~ eV < A. Even if this process is repeated many times, it
will not lead to an increase in the number of quasiparticles because none of the
emitted phonons will be able to break a pair. These phonons with energy , E <

2A, pass out of the Al film and away into the substrate. However, occasionally a
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quasiparticle may tunnel multiple times before it scatters inelastically. If it
tunnels enough times before scattering to have an energy above the gap greater
than 24, it can then emit a phonon with sufficient energy to break a pair. We do
not have a detailed simulation of this multiplication process, but preliminary
calculations show that this explanation is plausible [Kozorezov 2002].

We found that we could affect the magnitude of the excess current in some
devices. In the course of a single cryogenic run, we would warm the junctions
above their transition temperatures by coupling light from a laser pointer to the
devices. We found that if we did this several times during a single run we would
often measure different amounts of excess current. Figure 5.1 contains sample I-
V curves of device OPS-F99-6B, recorded after repeated cycles of laser heating in
one cryogenic run. The amount of excess current evident in the [-V curve did not
change if we did not warm the junctions. We observed that, in most cases, the
recombination time measured by photon excitation increased if the excess current
decreased, increasing the charge gain due to backtunneling. This suggests that
the number of excess quasiparticles was reduced. (However, in the two cycles
that we found the lowest currents, we found that the measured recombination
time and charge gain were low.) We also observed that the amount of excess
current noise decreased with decreasing current. For those reasons, we generally
repeated the laser cycling until we found the device in a low current state with
more charge gain and less noise. Clearly, this rather haphazard way of preparing
the junctions for operation is undesirable.

We do not understand the mechanism for the variation of excess current.
A possibility is that laser cycling the junctions produced varying configurations
of fluxons trapped in the Al electrodes (though not in the junction itself). The
normal metal cores of the fluxons can serve as trapping centers for quasiparticles.
Trapping into a normal metal may be an efficient way to remove quasiparticles
that self-heating adds. Recombination is a poor way to removes these
quasiparticles because the recombining pair emits a phonon with an energy,

E > 2A, and it is unlikely that this phonon will escape the electrodes before it
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Figure 5.2 The top plot (a) shows current pulses from the two junctions of device OPS-F99-6A in
response to the absorption of a single UV photon. We infer that the photon landed near the
center of the devices. Plots (b) and (c) show histograms of collected charge in response to illumi-
nation by 4.89 eV UV photons and 2.27 eV green photons, respectively. The raw current pulses
are digitally filtered before being integrated. The histograms represent photons absorbed in a
limited region of the absorber.
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breaks another pair. Thus, very little energy is removed from the quasiparticle
system by recombination. On the other hand, when a quasiparticle is trapped
into a region of normal metal, it will emit a phonon with an energy E ~ A. This
phonon cannot break a pair. Even if two quasiparticles are trapped, they simply
emit two phonons that cannot break pairs. Itis therefore possible that trapped
fluxons in the electrodes could, in effect, “cool” the junctions. We do not have a
detailed model that explains why the traps would confine quasiparticles
generated in steady-state preferentially to photon-excited quasiparticles. We do
expect, and have demonstrated at X-ray energies, that the photon-excited
quasiparticles have a “hotter” energy distribution than the steady-state
quasiparticles. It may be that the higher-energy, photon-excited quasiparticles
are less likely to lose enough energy to scattering to become confined in the
traps.

We have detected optical and ultraviolet photons using a number of
different backtunneling devices. We have found the best resolution with the
imaging device OPS-F99-6B. This device has a Ta absorber 10 um wide by 100
um long by 0.6 microns thick. Each Al trap overlaps the absorber by 5 um. In Fig.
5.2a, we show a pair of current pulses which are the response of the detector to a
4.89 eV photon. Each trace is the response of one junction of the two junction
device. We infer that this photon was absorbed near the center of the device
because there are almost equal charges in the two current pulses. In Fig. 5.2b and
5.2c, we show two histograms of events recorded with this detector. We used a
bias voltage of 60 uV for these measurements. Fig. 5.2b and Fig. 5.2c are the
response to illumination with 4.89 eV ultraviolet photons and 2.27 eV green
photons, respectively. We have plotted the number of events versus the collected
charge. The raw current pulses were digitally filtered before being integrated to
obtain the charge measurements.

The full width at half maximum (FWHM) of the histogram for 4.89 eV
photons is 0.4 eV. The FWHM of the histogram for 2.27 eV photons is 0.47 eV. The
histograms in Fig. 5.2 contain events from a limited range of the absorber. The

84



theoretical limits based on the statistics of backtunneling are 0.2 eV at 4.89 eV
and 0.13 eV at 2.27 eV. The limit calculated in the last chapter based on
thermodynamic fluctuations of the steady-state quasiparticles is 0.45 eV,
independent of energy. The measured resolutions are in good agreement with
the thermodynamic prediction.

The resolution over the whole absorber, under UV illumination, is 1.5 eV,
for a resolving power of R=3.5. An energy resolving power of R=3.5 in the UV
implies that the detector can resolve 5 spatial pixels [Wilson 2000}. This
particular detector has an active absorber area 70 um long by 10 um wide.
Because the low signal-to-noise ratio, it was not possible to reliably correct the
measured charge for loss as a function as position. Therefore, the degradation of
the resolution when events from the whole absorber are included may be caused
quasiparticle loss or by variations of the Ta gap energy near the Nb ground
contact or near the region where the Al trap overlaps the Ta.

We have measured the effective quasiparticle recombination time by
averaging 2000 single UV photon pulses and fitting an exponential decay to the
waveform. We measure an effective quasiparticle recombination time of
t_=159us. The average number of times that a quasiparticle tunnelsisn=t__/7,_,
where t__is the tunnel time. We can extract the tunnel time from measurements
of R, We find t, =2.46 us. With this we find that n=65. We estimate that the
initial number of quasiparticles created by a 4.89 eV photon is about N =4000
[Rando 1992]. The total number of electrons we collect is about N, .,=240,000.
Thus, the addition of the Ta plugs in the wiring does produce a large charge gain
consistent with the observed recombination time.

Our measurements of backtunneling devices have shown that they do not
provide good energy resolution for two main reasons. The first is that
thermodynamic fluctuations of the quasiparticle gas in the junction electrodes
lead to excess current noise. The other reason is that the size of these fluctuations
is greatly increased by self-heating of the junctions, which increases the number

of quasiparticles. We imagined two ways to move forward at this point. One
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was to remove the Ta plugs from the device designs, eliminating backtunneling
altogether. A second approach would be to lower the gap of the quasiparticle
plugs, by making a Ta/Al bilayer for instance. As we have said, we believe that
the microscopic process that leads to excess current is quasiparticles tunneling
multiple times without scattering, until they reach an energy above the gap
greater than 2A,. The gap difference between pure Ta and Al is so large that
even these high energy quasiparticles are confined in the junction electrodes. On
the other hand, if the gap difference between the plug and the Al electrode is less
than 2 A, , the energetic quasiparticles may escape the junction before scattering.
Still, if the gap difference is greater than eV at the typical bias voltage, there
could still be a fair amount of backtunneling charge gain.

It is our interpretation that a related strategy has been pursued by the
group at ESA, though they apparently came to their designs by empirical
methods. The STJ detectors used by ESA are vertically stacked Ta/ Al/ Al-oxide/
Al/Ta tunnel junctions. Their Al trapping layers are generally much thinner than
the Ta layers. This causes the gap of the Al to be increased relative to the bulk
value, due to the proximity effect. ESA systematically measured different devices
with varying thicknesses of Al [Verhoeve 1997]. They found that the amount of
backtunneling gain increased with increasing Al thickness. This is what we
expect, since as the Al gets thicker, its gap decreases and the trap gets deeper.
However, they also found that devices with thick Al showed excess current and
excess noise. At the time, they had no explanation for this. They proceeded
without an explanation, choosing as their standard design the Al thickness that
offered the best balance between backtunneling gain and excess noise. In
retrospect, it seems very likely that they were observing the same phenomena

that we have described and explained.
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5.3 Non-backtunneling Devices

We have decided to develop non-backtunneling devices for the optical/
UV energy range. There are several reasons for doing this. First of all, the
intrinsic energy resolution of non-backtunneling device is better than
backtunneling devices. Second, non-backtunneling device are much faster.
Ultimately, the speed of a non-backtunneling device is limited by the tunnel time
of the device. The speed of a backtunneling devices is limited by the
quasiparticle lifetime, which is much longer. (In fact, since the backtunneling
gainis n = t_/T,,, the detector is slowed by the same factor that the charge is
amplified.) Finally, we understand the physics of non-backtunneling devices in
great detail, based on many years of development in the X-ray energy range. The
quasiparticle creation process may be very different in the optical than in the X-
ray. However, we know that most processes that affect the resolution in our X-
ray detectors occur in the tunnel junction [Segall 2000]. In addition, we expect
that the difference in the creation processes will be unimportant by the time
quasiparticles diffuse through the absorber to the tunnel junction. So, we expect
that the most important physics issues will be the same in the X-ray and optical.

ESA has measured large variations of the responsivity as a function of
energy in their STJ detectors [Kozorezov 2001]. Their explanation for this
phenomenon is that there is a significant density of quasiparticle traps in their
electrodes. At low energies, these traps trap a substantial fraction of the photon-
induced quasiparticles, leading to a low responsivity. At higher energies, the
traps are saturated by a small fraction of the quasiparticles and the responsivity
increases. Comparing the optical/ UV measurements and X-ray measurements at
6 keV, we do not see a significant variation in the responsivity of our detectors.

We have measured non-backtunneling devices using the same photon
source, the mercury calibration lamp, with which we tested backtunneling
devices. Unfortunately, the low electronic signal-to-noise makes it difficult to
find an oscilloscope trigger level that captures all the photon pulses without also
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capturing many false triggers. This makes it difficult to accurately characterize
the energy resolution of the device using this source. Still, we have been able to
understand some device physics based on these measurements. We have
measured two non-backtunneling devices, OPS-E00-7A and OPS-E00-10A. The
device parameters are nominally the same except OPS-E00-10A is actually a
_backtunneling device that we converted by circumventing the Ta plugs with a
new wiring layer. If we average a number of single photon pulses and fit an
exponential to the tail, we find a fall time of about 7 ps for both devices. Overall,
we expect the fall time to be limited by the tunnel time from the trap. The tunnel
time for these samples is __ = 4 ps for a bias voltage of 100 uV. One explanation
for the longer fall time could be poor outdiffusion. If quasiparticles can diffuse
freely in the counter electrode, it should only take about 10 ns for them to move
away from the tunnel junction. However, if there is a barrier between the
counter electrode and the wiring, the quasiparticles could be confined for a much
longer time. If we put this assumption into our device simulation, we extract a
7 us fall time, assuming an outdiffusion time from the counter electrode of
t_. =0.1ps. (In this case, it is really an out-tunneling time, but we will stay with
the conventional name.) It is at first surprising that such a short out-diffusion
time leads to a much longer fall time. We expect a long outdiffusion time to
lengthen the pulse because quasiparticles confined in the counter electrode can
backtunnel to the trap. If the out-diffusion time is longer than the tunnel time we
expect that the fall time will become the outdiffusion time. In addition, we
expect to see charge multiplication due to the backtunneling.

The explanation for the long fall time in our detectors is more subtle .
When a quasiparticle first tunnels from the trap to the counter electrode, it will
have relatively high energy and it is possible for it to reverse tunnel as an
electron (not backtunnel as a hole) until it scatters inelastically and loses energy.
In fact, since the quasiparticle would reverse tunnel to near the gap edge in the
trap where the density of states is very high, the reverse tunnel time is very short
compared to the backtunneling time. For our devices, we calculate that the
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reverse tunnel time to the gap edge is t_, = 0.1 us, compared to a backtunneling
time of 7, = 0.65 ps. (The backtunneling time, 7, from the counter electrode is
much shorter than 1, because the counter electrode volume is much smaller.)
Still, this reverse tunneling process will only happen if quasiparticles do not
scatter after tunneling. We calculate that the time for a quasiparticle 100 uV
above the gap to scatter to any lower energy is 0.05 us [Segall 2000]. This implies
that, in fact, a significant fraction of quasiparticles reverse tunnel. Once they
have reverse tunneled they wait, on average, another tunnel time in the trap. In
this way a relatively short t_ can lead to a lengthening of the pulse. We also note
that this process does not lead to any charge multiplication.

We have been able to measure the energy resolution of non-backtunneling
devices using the pulsed N, laser as a photon source. The N, laser emits intense
pulses of light at 3.68 eV (337 nm). The length of the laser pulses is about 4 ns.
We can use the laser as a multiphoton source by adjusting the intensity such that
more than one photon is absorbed during each laser pulse. We believe
multiphoton absorption can effectively simulate the response of the tunnel
junction to a single higher energy photon. The photons are absorbed in a few
nanoseconds but the excited quasiparticles diffuse to the junction over a period
of a few microseconds, allowing the quasiparticle distribution to smooth before
reaching the junction. In addition, the physical processes in the tunnel junction
take place on microsecond timescales (even 100 us timescales) and should
effectively average over nanosecond variations in the absorption. In addition,
since the device performance is limited by processes in the junction, multiphoton
absorption should accurately simulate the energy resolution of the device.

The results in this section were obtained after processing the raw pulse
data with a digital matched filter. The matched filter template is produced by
averaging all the pulses in a data set to give an estimate of the ideal pulse shape.
The filter template is then normalized. An individual pulse is then processed by
first multiplying each pulse by the filter template. The filtered “charge” of each
pulse is then calculated as the definite integral of the product waveform. We
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Figure 5.3 Histograms of the charge output of device OPS-E00-7A in response to illumination
with the N, laser. The histogram is fit with a composite function that distributes the counts
according to a Poisson distribution. The two histograms represent the response for two different
laser intensities. Each graph is labeled with the average number of photons, Y, extracted from the
fit. The peaks are labeled with the corresponding number of photons absorbed in the STJ.
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choose to normalize the filter template such that if the template is applied to the
average pulse, the output is equal to the unfiltered charge of the average pulse. In
the special case that the noise of the system is purely white noise, the matched
filter is an optimal filter [McDonough 1995]. We can also obtained similar
results processing the data with a 5* order Chebyshev bandpass filter with a
bandpass between 100 Hz and 35 kHz [Horowitz 1989]. We will use these
numbers for the bandwidth of our measurements in our later discussion of noise.
We have measured a number of single junction devices, all with 100 um?*
tunnel junctions. In Figure 5.3, we show two histograms of the charge output of
device OPS-E00-7A under laser illumination. Each point in the histograms
represents the response of the detector to a single pulse from the N, laser. The
histograms shows a number of evenly spaced peaks, indicating that the number
of photons absorbed varies from pulse to pulse. We expect this. We attenuate
the laser’s output at room temperature by 9 orders of magnitude, so that the
probability of any one photon getting from the laser to the device is very small.
If there is no correlation in the transmission of the photons, we expect the
number of absorbed photons to follow a Poisson distribution. To test this
hypothesis, we fit the histogram with a composite distribution:

P(O)= E(’MJ Wt -0~ (RenE, +Qo))]

where y is the average number of photons absorbed, E, is the energy of a single

photon, R is the responsively, Q, is the charge offset, and © is the standard
deviation of the charge. The composite distribution is the sum of many identical
Gaussian distributions evenly spaced in charge. The amplitude of each Gaussian
is determined by a Poisson distribution. The energy resolution is calculated from
the fit as AE = 2.3556/R. The fits to the composite function are shown in Fig. 5.3
and we see that they agree quite well.

We can gain information by examining the structure of the histograms in
more detail. First, we note that we get a better fit to the histograms if we assume

the first peak represents laser pulses during which zero photons were absorbed.
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This is reasonable because we use a synchronization signal from the laser to
trigger the data acquisition by the oscilloscope. Because of this, we actually
expect to record some triggers during which no photon was absorbed. Second,
we notice that the average charge of the zero-photon peak is not zero. This
charge offset, Q,, is caused by phonons coupling from the substrate to the
detector. As we have said earlier, the light emitted by the fiber onto the cold
stage is dispersed over an area much larger than the detector. Thus, when the
detector absorbs one photon, the substrate simultaneously absorbs ~10*photons.
This energy is converted into phonons which can then couple to the detector and
break pairs. Even though the coupling between the substrate and the detector is
not very efficient, the number of quasiparticles created is significant because so
much more energy is absorbed by the substrate than by the ST].

We can distinguish this substrate signal from the aborber signal in the
current pulses that we detect. In Fig. 5.4a we plot three waveforms, which were
recorded from a second device, OPS-E00-10A. Each waveform was produced by
averaging pulses whose charge fell within a single peak of a multipeak
histogram. In this case, the waveforms are the average of pulses from the 0, 1,
and 2 photon peaks of a histogram with y = 0.80 photons. The pulse from the 0
photon peak has a uniform decay with a very long time constant. We see that the
1 and 2 photon pulse shapes instead have a double exponential decay. They both
have a fast component whose magnitude scales with the number of photons
absorbed in the STJ. In addition, the time constant of the fast component
matches the time constant measured when the device is excited with single
photons from the Hg lamp. We also clearly see that the slow components from
the 1 and 2 photon pulses are the same and they also match the decay of the 0
photon pulse. Therefore, we conclude that the slow component is independent
of the number of photons absorbed in the ST] and we infer that is due to
excitation of the substrate. In Fig. 5.4b we plot three more waveforms. These
waveforms are the average pulse from the 0 photon peak of three different data

sets, each recorded with different laser intensities. The average number of
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Figure 5.4 Average current pulses from device OPS-E00-10A. The pulse shapes are produced by

averaging pulses whose charges are in one peak of a charge histogram (see Fig. 5.3). In (a), the
pulses are, in order of increasing peak current, from the 0, 1, and 2 photon peaks of a histogram
with y=0.80. We see the pulses have a fast component that scales with the number of photons
and a slow component that is the same for all three. In (b), the pulses are from the 0 photon peak
of three different histograms with, in order of increasing peak current, y= 0.80, 1.56, and 3.65.
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Figure 5.5 Variation of the charge offset of the zero photon peak as a function of the average
number of photons absorbed in the detector. The average number is varied by varying the room
temperature attenuation of the laser.

photons absorbed for the three data sets werey = 0.80, 1.56, and 3.65. (The pulse
for y = 0.80 is the same as in Fig. 5.4a.) We see that the magnitude of the substrate
signal is proportional to the average number of photons, which is a measure of
the laser intensity.

We exclude much of the substrate signal simple by windowing the pulses
in time. Typically, we only use a 30 us section of the pulses. Still, we expect the
substrate effect to produce a charge offset in the histograms because some of the
substrate signal is coincident in time with the absorber signal. As we have seen,
this substrate signal is independent of the number of photons absorbed in the
STJ. This implies all the peaks should be shifted to larger charge by the same
average amount. Our composite fitting function therefore assumes that the
peaks are equally spaced, but have an offset from zero. This assumption clearly
fits the data. We do expect that the charge offset will vary with the attenuation of

the laser intensity. If we decrease the attenuation, the substrate will absorb more
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Figure 5.6 The square of the energy resoltuion plotted against the average number of absorbed
photons. The y-intercept gives the resolution not due to substrate noise.
energy during each pulse, ultimately breaking more pairs. Of course, decreasing
the attenuation will also increase the average number of photons absorbed by the
ST]. Figure 5.5 shows the variation in the charge offset as a function of the
average number of photons absorbed. These offsets are obtained by fitting the
histogram of charges, after windowing and filtering. (The average pulses in Fig.
5.5 were taken from the same three data sets.) We see that the offset varies
linearly with the average number. We also see that the intercept is only slightly
different from zero, meaning that if we turned the laser intensity to zero, there
would be a negligible offset.

We also expect the substrate charge to degrade the energy resolution of the
detector. This is because the amount of charge created by substrate phonons will
vary from pulse to pulse. We can infer what part of the measured resolution is
due to this substrate noise by studying how the resolution changes when we

change the attenuation. To do this, we must make some assumptions. First, we
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assume that the substrate noise is independent and adds in quadrature with
other noise sources. We can also guess that the variance of the substrate charge
will be proportional to the average substrate charge. In Fig. 5.6 we show the
square of the energy resolution as a function of the average number of photons
absorbed in the STJ (which is proportional to the offset charge). We observe a
number of things. First of all, the energy resolution clearly broadens as the
average number of photons increases. It is also clear that for the lowest number,
the energy width is not dominated by the substrate noise. If we fit a line to the
data, we find that the substrate noise is about 1.3 eV per photon absorbed on
average in the Ta and the remaining noise is about 2.14 +/- 0.07 eV.

We now want to understand what factors contribute to this 2.14 eV energy
width. Electronic noise is certainly one important contribution. We estimate the
broadening due to the electronic noise in the following way. During a run, we
can shutter the N, laser while still allowing it to electronically trigger the
oscilloscope. We can then process these noise pulses as if they were real photon
pulses. If we do this, we get a histogram of charges with zero mean and some
variance. Based on the responsivity measured from the multiphoton histogram,
we can convert this charge noise to an energy resolution. We find an electronic
noise resolution of 2.15 eV. Thus, within our measurement accuracy the

resolution is fully accounted for by electronic noise and substrate noise.

5.4 Future Work

Future work on this project will roughly fall into two categories:
improving the performance of the detectors themselves and developing
applications. I will focus on what can be done to improve the performance of the
detectors here. At the moment, the performance of the detectors is limited by the
electronic noise of the amplifier and the noise due to substrate absorption. The
substrate noise is essentially an artifact of using the N, laser as a source with

inefficient coupling. It is not a characteristic of the ST] detector itself. We would
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Figure 5.7 Current noise spectra of the detector plus amplifier. We plot two spectra correspond-
ing to two different nulling loop amplifiers, the OP-97 and OPA-627.

not observe the same noise if we measured with a single photon source. To use
the N, laser more effectively in the future, we could either improve the coupling
of the fiber to the detector, or could illuminate the detector through an aperture,
masking the substrate from the laser light. Thus, improvements in the device
performance in the near future will mostly come improvements in the electronic
noise.

There are four major sources of electronic noise in our existing
measurement setup. They are electromagnetic interference, current noise of the
tunnel junction, voltage noise of the input FET and current noise of the nulling
loop voltage follower. Referring to Fig. 5.7, we see a group of discrete lines in the
electronic noise spectrum in the frequency range from 1-10 kHz. It is not clear
whether these lines are due to direct coupling of electromagnetic radiation, or if
they are generated by microphonic vibrations. Either explanation is feasible.
The attenuation of the shielded enclosure we use drops off below 10 kHz,
allowing low-frequency magnetic fields to penetrate. If this is the cause, we
could reduce the effect by using a u-metal shield that effectively attenuates low
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frequency magnetic fields. We could also improve the wiring of the dewar to
reduce its susceptibility to EMI. If the noise is coupled by microphonic
vibrations, we could improve the dewar’s vibration isolation (which is now very
crude) and improve the wiring.

We naively expect the current noise of the junction to be the shot noise of
its bias current. This implies a current spectral density of i_ = (2el)'/2. Abias
current of approximately 1 nA would then imply i, ~ 20 fA/VHz. We measurea
current noise from the junction of i_ ~ 40 fA/ VHz. There are a number of things
that could explain this excess noise. First of all, the noise could be caused by a
flux of infrared or microwave photons being absorbed by the device. As
mentioned in Chapter 3, the current generated by a flux of photons from room
temperature blackbody radiation would have a noise greatly exceeding standard
shot noise. Thus, even if this photon flux were generating a negligible amount of
dc current, its noise could dominate the shot noise of the device. At the moment,
the wiring in the dewar is not filtered, so black body radiation from the N, stage
and room temperature could couple down the leads to the device. If this is the
problem, the solution is to filter the leads and enclose the detector in a light-tight
enclosure at 0.2 K.

We believe there are also intrinsic physical processes that could lead to
excess current noise in the device. First of all, the standard derivation of shot
noise in a tunnel junction assumes that the electrodes are ideal electron
reservoirs, meaning that the tunneling does not affect the quasiparticle
distribution in the two electrodes. However, at least one of our electrodes,
namely the trap, is finite in extent. We therefore expect that the number of
quasiparticles in the electrode will fluctuate of order the square root of the
number. These fluctuations will in turn generate excess current noise. The
calculations and simulation presented in the previous chapter show that the shot
noise power is doubled for frequencies less than ~1/7,. As mentioned earlier in
this chapter, we have evidence that a significant number of quasiparticles that

tunnel across the junction reverse tunnel as electrons before they cool to the gap
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edge. This is distinct from backtunneling, where quasiparticles tunnel as holes.
This combination of tunneling and reverse tunneling contributes no average
current, but still contributes shot noise. Basically, the dc current observed should
bel, = [T ua! = | Leverse | - While the shot noise power is 2el,, where

I, = [Tomara) + | Levene |- Thus, we see that a significant amount of reverse
current would cause us to underestimate the shot noise based on the observed dc
current. For either of these explanations, the solution is to reduce the number of
steady-state quasiparticles in the junction, either by cooling the junctions or
making smaller junctions.

It is not practical to reduce the voltage noise of the input FET. The FET we
presently use, the 25K146, has the lowest voltage noise of any commercial FET.
(The noise is specified to be 0.6 nV/VHz. We actually have a number of FETs
with a voltage noise of 0.4 nV/VHz.) However, the contribution of the voltage
noise to the total noise depends on the impedance at the input of the amplifier.
In fact, the induced current noise due to the voltage noise, e, is

€

{1 =

n Z..

n

Thus, we can reduce the contribution of the voltage noise by increasing the
impedance at the input. At the moment, the impedance at the input is
dominated by the capacitance of the 25K146 and the capacitance of the leads
running from room temperature to the 0.2 K stage. The effective capacitance of
the 25K146 when used with the A250 is C = 300 pF, including about 100 pF
arising from the Miller effect. The capacitance of our leads is C,, = 120 pF. The
best overall strategy for reducing the lead capacitance is to move the input FET
from room temperature to the cold stage. Unfortunately, silicon JFET’s do not
function properly below 120-150 K. Therefore, we would place the FET as close
to the cold stage as possible within the constraints of the cooling power of dewar
and the practicality of thermal engineering. Some groups [Porter 1999,2000]
have engineered designs with as little as 5-7 pF of capacitance between 150 K
FETs and 0.05 K detectors! We believe that 20-30 pF might be a reasonable
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projection for our dewar. Inaddition, not every FET can even be cooled to 150 K.
We have found that the 25K146 does not function properly at cryogenic
temperatures. We have recently made measurements of the IF1801 FET made by
InterFET. We found that it does function well at cryogenic temperatures and that
its noise improves from 0.7 nV/ VHz to 0.5 nV/VHz upon cooling. Its capacitance
is specified to be 100 pF. This is a good candidate for a cold FET. InterFET makes
other FETs that would be better matched to 20-30 pF of lead capacitance, but it
remains to be seen if they function properly at cryogenic temperatures.

The final source of electronic noise in our amplifier is the current noise of
the input operation amplifier (op-amp) of the nulling loop, which provides the
dc bias path of the amplifier. In the electronics schematic of Fig. 2.3, this
amplifier is labeled “OP-97". We presently use the OP-97 op-amp, which is a
precision bipolar transistor (BJT) op-amp designed to have relatively low current
noise. We measure a white current noise of 40 fA/VHz. While this is much less
current noise than typical BJT amplifiers, it is a dominant contribution to our
noise at low frequency, and represents a lower resolution limit of about 1 eV. We
have investigated using op-amps with FET inputs. FET op-amps have extremely
low current noises at low frequency, typically ~ 1 fA/ VHz due to the shot noise
of their input gate leakage. Unfortunately, FETs have another source of current
noise. At higher frequencies, when there is a phase shift at the drain of the input
FET, the Miller effect no longer leads to an effective input capacitance but,
instead, produces an effective input resistance. This resistance has Johnson noise.
Further, this Miller resistance decreases linearly with frequency, producing a
current noise that increases as the square root of frequency [Horowitz 1989].

This noise typically starts to dominate the shot noise of the FET in the frequency
range of 10-100 kHz. We have measured the current noise of a number of
precision FET op-amps (including the AD-795 and OPA-627) and found that any
benefit gained from the decrease in the low frequency noise (compared to the
OP-97) is canceled by the increasing Johnson noise at high frequency (refer to Fig.
5.7).
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Figure 5.8 Schematic of passive voltage bias circuit, showing a cold bias resistor and AC-coupling
capacitor.

Our solution to this problem is to move from the active voltage bias
circuit, which uses the op-amp, to a passive voltage bias. In Fig. 5.8, we show the
schematic of a passive voltage bias circuit that we have tested. The are a number
of reasons why we have used the active voltage bias instead of a passive voltage
bias in the past. Basically, a passive voltage bias circuit with the same dc load
line as the active circuit would contribute many orders of magnitude more noise.
For instance, a conservative estimate of the dc load line of our active circuit is 10
Q. A passive 10 Q bias would also appear as 10 Q at the input of the 25K146/A250
amplifier. This 10 Q impedance would convert the voltage noise of the 25K146 to
40 pA/VHz, which is 1000 times higher than the noise of the active bias circuit!
Still, the dc stability requirements that the bias circuit must meet are much less
stringent for optical detectors than for X-ray detectors, especially for a single
pixel device. Basically, a bias resistor between 100 kQ and 1 MQ cooled to 0.3 K
should be sufficient from the point of view of noise. Our present optical/UV
STJs have a dc bias current of ~ 1 nA at 100 uV. This implies an effective dc
resistance of R, =V, /1, = 100 kQ. So, a 100 kQ bias resistor is a marginal choice,
remembering the load line of a good voltage bias should be much less than the

R, of the device. In fact, we have measured devices with the circuit shown in
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Figure 5.9 Conceptual circuit used to calculate how the noise of the measurement system scales

with various parameters. The circuit is comprised of an integrator amplifier followed by a
simple filter.

Fig. 5.8 and found exactly that: the bias was marginally stable. Still, by either
making smaller junctions or cooling the existing junctions, we can make R,
much higher. Basically, the voltage scale is fixed by A, but the current decreases
linearly with junction size and exponentially with decreasing temperature. Thus,
we believe that passive voltage bias will work well in the near future.

We can predict how the improvement mentioned above will affect the
energy resolution of the detectors. To do this, we must understand how the
energy resolution scales with various parameters that affect the noise. For the
purpose of these calculations, we imagine the conceptual measurement circuit
show in Fig. 5.9. The first part of the circuit is an integrating amplifier,
characterized by an integration time 7, = RC,. The integrator is followed by a
simple filter that limits the bandwidth of the measurement. The filter is
characterized by the time constant T, =R_C_. Without loss of generality, we
can express the time constants of the circuit in units of thet,, ie, T =0t and
T, = T/ B where we general expect that 1 < o, < 10. Expressing the time
constants of the measurement in terms of t__ will allow us to more clearly
understand how the noise performance is related to the speed of the detector. In

the end, we want to compute the signal-to-noise ratio at the output of this circuit.
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However, for an input charge signal Q,, the output voltage willbe V_, =Q /C,
within factors of order unity for a wide range of parameters. For that reason, we
will focus on how the noise scales.

In general, we can compute the variance of the charge noise referred to the

input, 6.2 as
CZ
o= 2—’ ] S, (w)dw (5.4.1)
24 0

where S, (o) is the single-sided, voltage-noise spectral density at the output. For

an input white current-noise spectral density i ?, we compute

"oy (0 el )@+ w})
b O (54.2)
4 a),(wf + wm)
where w, =1 /7, and w_, =1 /T, Interms oft,, we then find:
172

1, ol

00 =74V Tun ) (5.4.3)
2 o+ %3

Thus, we see that the charge noise due to current noise is proportional to the
magnitude of the noise and to the square root of the tunnel time. This implies
that if the electronic noise is dominated by white current noise, then the signal-
to-noise ratio will be maximized by making the detector as fast as possible.

We can now consider the contribution of an input white voltage-noise
spectral density e 2. As mentioned earlier, the contribution of the voltage noise to
the total noise depends on the impedance at the input of the amplifier. For an

total resistance R_and input capacitance C,, we find

dw

o’ = C_m‘i]I wfu,(af +w§,)
LS 2 (a)2 + a)f,a)(a)Z + w,)

(et 0, (0,00 + ) (5.4.4)

4 w,(wf+ww)
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where 0_=1/R_C,. In this case, we have not expressed 7, in terms of T,
because we cannot freely choose R and C_ in the same way that we can choose
. We can simplify (5.4.4) in two important limits. In the limit thatR

dominates the impedance in the signal band we have .2 >> ww_,. We then find

T, and t
cut

2 2 1 €, .' wcul
C,. ((Di,. >> w,w,m) = Z( R, ] W (5.4.5)

which is the same as (5.4.2) with an effective current noise i, =e /R, . The

opposite limit is when C,_| dominates the input impedance, which implies 0 2<<

o_. In this limit, we find that charge noise referred to the input is

£ cut’

0.,.¢=1—C‘Le-"~ B . (5.4.6)
2t | B+ Y,

We see in this limit that the charge noise is proportional to magnitude of the
voltage noise and input capacitance, but inversely proportional to the square root
of the tunnel time. This implies that if the noise of the amplifier is dominated by
C,_ and e, then the detector should be made as slow as possible.

We can use the above formulas to scale the noise of our detector system.
Still, we need a absolute calibration of the noise. The formulas above specify
charge noise. However, we measure the effective current noise of our amplifier.
In principle, it is possible to calculate the charge noise given a measured current
noise spectrum, but, in practice, it is difficult to do in a way that can be compared
absolutely to an output charge signal. In addition, typical specification for
amplifiers and transistors are in terms of voltage noise and current noise. For
these reasons, we calibrate the noise in terms of the measured effective current
noise in the follow way. The average current noise of the noise spectrum in Fig,
5.6 in the band 100 Hz to 35 kHz is 85 fA/VHz. Using 2.15 eV as the energy
resolution due to electronic noise we obtain a conversion factor between effective
current noise and energy resolution of 0.025 eV /(fA/ VHz). For a given set of

noise parameters (e_,i_, C,, etc.) we calculate the average effective current noise,

I,, s
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-2 1 fog €, ? .
= ( 7 ) + zi]df (5.4.7)
cut O in
where the cut-off frequency is
4
fou=35 kHZ'—rL‘S-. (5.4.8)

We then calculate the energy width due to the electronic noise as

AE,, =0.025eV-i, - ng; (5.4.9)
with  in units of fA/VHz. The tunnel time is scaled with respect to the value
1, =4 us because that is value for the detector measured, when biased at 100 uV.
Conceptually, we are calculating an RMS current noise and then multiplying it by
a factor that accounts for integrating the current noise in time. Itis easy to show
that this method reproduces the scaling properties calculated in (5.4.1)-(5.4.6).

In previous work at X-ray energies, we found a conversion factor of 0.072
eV/(fA/vHz) for a double junction device. For a single junction device, this
value should be divided by v2, giving 0.051 eV /(fA/vHz). We believe the
additional factor of 2 difference is related to improvements in grounding and
signal processing. In older measurements, there was a significant amount of 60
Hz noise. Consequently, the digital filter that gave the best energy resolution
typically had a low cut-off frequency in the 1-5 kHz range. While this filter
effectively removed the noise, it also filtered a significant amount of signal,
typically reducing the collected charge by a factor of 2-3. In recent
measurements, the 60 Hz pickup has been eliminated, so we typically use a filter
with a low cut-off frequency of 100 Hz. With this filter, the charge is not
significantly reduced. Thus, the signal-to-noise is better and the conversion
factor is smaller.

We plot pmdi&ed resolving powers for various scenarios in Fig. 5.10. The
upper limit on the resolving power is the statistical limit based on creation noise,

with a Fano factor of F = 0.2, and trapping noise, assuming a trapping
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multiplication of 2 [Segall 2000]. The total effective Fano factor, including the
trapping noise, is F’ = 0.45. The energy width due to these statistical sources is

where € = 1.7A . All three curves assume 1,.=10 s, area =5 um?, and passive
voltage bias. We also assume that the junctions are operated at 150 mK and that
their subgap currents follow BCS predictions down to that temperature. We
included that shot noise of the bias current in the calculations, but it is
unimportant at 150 mK. We plot curves for three different amplifiers. The first is
a cold IF1801 FET with e_= 0.5nV/VHz, C, ;=100 pF, C,, =20pFand R, =10
MQ. We specify the passive voltage bias resistance because the noise at low
frequency is dominated by e_/R,,... The Johnson noise of the bias resistor is also
included in the calculations, assuming the resistor is also cooled to 150 mK. The
second amplifier uses values for cold FET amplifiers assembled by the Goddard/
Wisconsin collaboration [Szymkowiak]. The values aree =3 nV/ VHz, C.+C,.,
=13 pFand R = 10 MQ. We believe that these values represent the limit of cold
FET technology. The final curve is for a single-electron transistor amplifier
[Schoelkopf 2001]. The parameters assumed are e, =20 nV/ VHz, C+C,,, =0.0
pF, Cs; = 0.25pF and R, =20 MQ. The value of e_assumed is better than what
has been demonstrated (30 nV/VHz), but is a reasonable estimate for future
work. We assume a higher bias resistance for the SET to compensate for the
higher value of e. We also assume that the SET is fabricated on-chip with the
STJ such that capacitance of the SET and leads are negligible. The dominant
capacitance in this case is the capacitance of the tunnel junction itself. In table 4.1,
we summarize the electronic noise contributions for the various amplifiers.
These contributions are independent of energy, except for the SET amplier whose
total electronic noise depends on energy, as discussed below.

The only other important noise consideration is the reduction in the
dynamic resistance of the tunnel junction during a photon pulse. The dynamic

resistance during a pulse, R, is reduced because the effective temperature of the

106



100

Q .
: 7
6 R TIAR ,// .
Statistical Limi o9 ol
c <
~J /' [ ..'
s 4 B
I I/"--.
; -o
L
Ll
<
N
Ll
[
('
8;-' Line __Amplifier STJtime R..
7+——  SET(20nv)  10ps 20 Mg
61—--- NASA/Wisc.  10us 10 M
(| e CodIF1801  10ws 10 Me
> 3 4 5678 2

1 10
E [eV]

Figure 5.10 Predictions of resolving power for a single pixel STJ with a 5 um? tunnel junction.
The resolving power is bounded by the statistical limit imposed by quasiparticle creation trap-
ping multiplication. We have plotted predictions for three different amplifiers.
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Amplifier Noise due toe C, ® Noise duetoe /R, Total Electronic

Cold I[F1801 0.12eV 0.002 eV 0.12eV
NASA/Wisc. 0.08 eV 0.012 eV 0.08 eV
SET 0.01eV 0.04 eV 0.064 eV

Table 5.1 Predicted electronic noise contributions of the three proposed amplifiers. The
capacitive noise is calculated by assuming the input resistance is infinite. The resistive noise is
calculated by assuming the input capacitance is zero. Note that the two contributions are not
completely independent when calculated in this way, because both terms are related to the
amplifier voltage noise. The Johnson noise of the bias resistor contributes 0.036 eV to the first
two amplifiers and 0.025 eV to the SET amplifier. The total electronic noise quoted for the SET is
the value at 5 eV.

excited quasiparticles in the junction is generally higher than the bath
temperature. For an incident photon energy of 6 keV, we have measured a
resistance during a pulse of 1.7 kQ for a junction bias voltage of 80-90 uV and
1, = 2.5 pus [Segall 2000]. We assume that R, is inversely proportional to the
photon energy, E , simply because the magnitude of the current scales with the
photon energy without changing the energy distribution of the quasiparticles in
junction. We assume that the junctions are baised at 150 uV which doubles R,.
Changing T, affects R, in two ways. First, the magnitude of the excited current,
and therefore R, is inversely proportional tot, . Second, a longer 7, _allows the
quasiparticles to cool more before tunneling, increasing R,. We have simulated
this effect, and use a linearized fit to the simulations in the noise calculations.

Including all of these effects, we calculate the resistance during a pulse as

(5.4.10)

The effect of R, is only important in the SET curve here. Itis this effect that
causes the SET curve to bend down from the statistical noise at high energy.
These predictions say that, with hard work, STJs should be able to achieve

a an energy resolution that will make them useful for a number of applications.
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5.5 Perspectives

Cryogenic detectors are developing into a mature technology. At this
point, the important physics of both ST] detectors and TES detectors have been
elaborated. Detectors in the laboratory have been shown to perform at or near
theoretical expectations. In addition, prototype spectroscopy systems have been
used to make real measurements. In short, the detectors themselves have
developed to the point that they can start being used in real applications. The
next challenge for people working in the field will be to develop truly useful
systems that enable measurements of new physical phenomena. Especially in
the optical energy range, the technical challenges are intense. Many optical
applications will require large-scale, imaging arrays of detectors. It is not clear
that it will be possible to develop measurement systems can that cool these large
arrays while coupling light to them and bringing their output signals to room
temperature without degrading the performance of the detectors. This is the
next great challenge for the field, and the success or failure of this endeavor will
determine the ultimate utility of cryogenic detectors. Depending on one’s
outlook, this challenge can be seen as daunting or exciting.
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Appendix A: Device Fabrication Procedure

Frunzio-Wilson v. 2.1 (July 2002)
This fabrication procedure is largely just an elaboration of that developed
by Michael Gaidis [Gaidis 1994].

I. Wafer Surface Oxidation

IL.

Use 2" diameter Siltronix Si wafer (max 9 each time):

a) Soak in acetone (ACE) with ultrasonic agitation for 2 minutes;

b) Rinse with de-ionized water (DI) for 1 minute;

¢) Rinse in running DI until you get 13 MQ-cm;

d) Soak in (4 : 1 = H,SO; : H,0,) solution for 5 minutes (put acid into
base and put the beaker into a Petri filled with water to handle this
exothermic solution);

e) Rinse with DI for 2 minute;

f) Rinse in running DI until you get 13 MQ-cm;

g) Soak in (100 : 1 = H,O : HF) solution for 2 minutes (do not use
glass beaker),

h) Rinse with DI for 2 minutes;

i) Rinse in running DI until you get 13 MQ-cm;

j) Soakin(5:1:1= H,O : NH,OH : H;0,) solution for 3 minutes;

k) Rinse with DI for 2 minutes;

I) Rinse in running DI until you get 13 MQ-cm;

m) Soak in (5:1:1=H,0: HCl: H;0,) solution for 3 minutes;

n) Rinse with DI for 2 minutes;

0) Rinse in running DI until you get 13 MQ-cm;

p) Soak in methanol (MET) to preserve native oxide growth (2 nm in
30 minutes, which is also the native oxide thickness in saturation at
room temperature);

q) Blow dry wafers in No;

r) Oxidize wafers in the wet oxidation furnace at 1000 °C for 30

minutes to obtain <300 nm amorphous-SiO and 20 minutes in N, to
anneal the surface.

Wafer Preparation for Tantalum Absorber Deposition
1) Clean the oxidized wafer:
a) Soak in normal-methyl-2,pyrrolidinone (NMP) with ultrasonic
agitation for 20 seconds;
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b) Soak in ACE with ultrasonic agitation for 20 seconds;
¢) Soak in MET with ultrasonic agitation for 20 seconds;
d) Rinse in running DI for 1 minute;

e) Blow dry wafer with Ny;

f) Spin dry wafer for 45 seconds;

2) Load the wafer in the Kurt .J. Lesker sputter system on the SiO-
coated wafer holder, with a 3/64" thick and 2" diameter stainless steel
disk on its back.

3) Prebake the wafer at 350 °C for at least 6 hours:

a) Check the Athena heater thermocouple is on #6 of the yellow
connectors on top left of the chamber;

b) Make sure switch is on DLA (Dual Lamp Assembly);

¢) Turn on all cooling water supplies;

d) Set Athena on standby (red light on) (Lamp SCR will blow if
MAIN power is turned on when Athena is not in standby);

e) Switch on the MAIN power,;

f) Use arrows to set temperature (350 °C);

g) Hit index button until you get to "-At- 02;

h) Hit tune to start heating process;

i) Open STA-3 MAIN shutter.

IIL. Titanium Sputter Cleaning
1) Check that the base pressure is about 3x10°7 Torr before deposition.
2) Sputter Ti from the 1" torus dc magnetron sputter gun:
Note that the parameters should be argon=10 mTorr and 175.9 sccm;
125 W, 340 V, 0.39 A.
a) Switch off the ion gauge;
b) Set conductance controller to 4.0;
c) Close the conductance controller switch;
d) Close the CHAM INTERLOCK valve;
e) Switch on station gas AR2;
f) Switch on the capacitance manometer;
g) Switch on the flow controller (FC) main;
h) Switch on FC channel 1;
i) Turn the capacitance manometer controller to "AUTO";
j) Set pressure to 10 mTorr (1 turn=10 mTorr);
k) Set the switch on gun B (Titanium);
1) Switch on the 1.5 kW power supply;
m) Fix the setpoint at 40 W;
n) Switch on "OUTPUT" to start plasma (sky blue light);
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o) Increase the setpoint to about 125 W;
p) Sputter for 40 minutes;

q) Decrease the setpoint to 40 W;

r) Set pressure to 0 mTorr;

s) Open the CHAM INTERLOCK valve.

IV. Tantalum Presputter
1) Check that the base pressure is about 3x10”7 Torr before deposition.
2) Presputter Ta from the 2" torus dc magnetron sputter gun:
Note that the parameters should be argon=6 mTorr and 146 sccm;
300 W, 295 V, 1.04 A.
a) Switch off the ion gauge;
b) Set conductance controller to 1.5;
¢) Close the conductance controller switch;
d) Close the CHAM INTERLOCK valve;
e) Switch on station gas AR3;
f) Switch on the capacitance manometer,
g) Switch on the flow controller (FC) main;
h) Switch on FC channel 1;
i) Turn the capacitance manometer controller to "AUTO";
j) Set pressure to 6 mTorr;
k) Set the switch on gun F (Tantalum);
1) Switch on the 1.5 kW power supply;
m) Fix the setpoint at 40 W;
n) Switch on "OUTPUT" to start plasma (sky blue light);
o) Increase the setpoint to about 300 W;
p) Presputter for 3 minutes;
q) Decrease the setpoint to 40 W;
r) Set pressure to 0 mTorr;
s) Open the CHAM INTERLOCK valve.
t) Increase the DLA temperature to 750 °C (it takes approximately 2
minutes).

V. Ion Beam Cleaning
1) Ion beam clean the wafer with the 2 cm Kaufman ion source:
Note that the parameters should be argon=1.5 sccm; beam=500 V and
4.7 mA; accelerator=35 V and 0.1 mA; discharge=35 V and 0.74 A;
cathode=6.6 A; neutralizer=4.0 A and 9.1 mA; (corresponding to a
pressure of about 1.8x10° Torr and an Ar" current of about 330

nA/cm?).
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a) Check that the ion gauge is off;

b) Check that chamber interlock is open;

c¢) Check that the conductance control is set to 1.5;

d) Check that the conductance controller is closed;

e) Switch on station gas AR4;

f) Switch on channel 2 of the flow contoller (set at 1.5 sccm);

g) All knobs to zero on the ion beam power supply;

h) Source on (left switch; right one is for beam);

i) Discharge up until V=355 V;

j) Turn up cathode until discharge current = 0.2 A (discharge light
stops blinking at about 0.14 A; cathode current > 5.5 A);

k) Turn up beam voltage four tums clockwise;

1) Tum up accelerator voltage 1/2 turn clockwise;

m) Turn on beam (all control LED's should be on, none blinking);

n) Discharge voltage down to 35 V;

0) Set beam voltage to 500 V;

p) Set accelerator voltage to 35 V (if accelerator current is more than
25% of beam current, turn the beam off);

q) Turn up cathode current until beam current is 4.7 mA

r) Increase neutralizer current until probe current is zero (shutter
must be closed. Neutralizer current should be around 4 A,
discharge current around 5 mA);

s) Adjust beam current if necessary

t) Open shutter #4,

u) Clean for 2 minutes;

v) Close shutter 4 or move the sample on the next target;

w) Turn off beam;

x) Turn off knobs (in order: accelerator, beam, cathode and
discharge);

y) Switch off channel 2 of the flow contoller;

z) Switch off station gas AR4.

VL. Tantalum Absorber Deposition
1) Sputter Ta to desired thickness:
Note that the parameters should be argon=6 mTorr and 145.6 sccm;
960 W, 410 V, 2.3 A; rate=3.4 nm/s. Source to sample distance is
approximately 3 inches. :
a) Close the CHAM INTERLOCK valve;
b) Set pressure to 6 mTorr;
¢) Switch on "OUTPUT" to start plasma (sky blue light);
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d) Increase the setpoint at 960 W;

e) Open shutter F (sputtering time 175 seconds for Ta thickness of
600 nm);

f) To shut down, close shutter F;

g) Ramp down power level to zero;

h) Turn off the 1.5 kW power supply;

i) Turn the capacitance manometer controller to "CLOSE";

j) Switch off the flow controller channel 1;

k) Switch off the flow controller main;

1) Switch off the capacitance manometer;

m) Switch off station gas AR3;

n) Open the CHAM INTERLOCK valve;

0) Cool sample at least 2 hours in vacuum, to <300 °C:

p) Close STA-3 MAIN shutter;

q) Set Athena on standby (red light on) (otherwise SCR will blow);

r) Switch off the MAIN power;

s) Use arrows to set temperature (350 “C);

t) Remove the sample and turn off all cooling water supplies.

VIL Tantalum Absorber Patterning by Positive Photoresist

a) Clean the tantalum surface:

a) Soak in ACE with ultrasonic agitation for 20 seconds;
b) Soak in MET with ultrasonic agitation for 20 seconds;
c¢) Rinse in running DI for 1 minute;

d) Blow dry wafer with N;

e) Spin dry wafer for 45 seconds;

b) Spin Shipley 1813 photoresist at 4100 rpm for 45 seconds
(thickness=1.2 um).

c¢) Bake on hotplate at 90 °C for 180 seconds.

d) Expose in HTG contact mask aligner for 16 seconds (4.87 mW/cm?)
with ABSORBER mask.

e) Develop in 100 ml of (1 : 1 = H,O : Microposit Developer) for 90
seconds.

f) Soak in DI bath immediately to stop the development.

g) Rinse in running DI for | minute.

h) Bake on hotplate at 110 °C for 10 minutes.

i) Etchin 52 ml of (3 : 1=Kepro etch solution (FeCls, HCI) : HF) for
108 seconds, etch rate is about 5.5 nm/sec (it start to clear the Ta
after 95 seconds then the endpoint is determined by inspection).

j) Soak in DI bath immediately to stop the etching.
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k) Rinse in running DI for 1 minute.
1) Blow dry wafer with N,.
m) Spin dry wafer for 45 seconds.
n) Strip the photoresist:
a) Soak in ACE/PH with ultrasonic agitation for 20 seconds;
b) Soak in ACE with ultrasonic agitation for 20 seconds;
¢) Soak in MET with ultrasonic agitation for 20 seconds;
d) Rinse in running DI for 1 minute;
¢) Blow dry wafer with N3;
f) Spin dry wafer for 45 seconds;

VIII. Niobium Contact Patterning by Negative Photoresist

1) Clean the wafer:
f) Soak in ACE with ultrasonic agitation for 20 seconds;
g) Soak in MET with ultrasonic agitation for 20 seconds;
h) Rinse in running DI for 1 minute;
i) Blow dry wafer with Na;
j) Spin dry wafer for 45 seconds;

2) Spin Hoechst-Celanese AZ5218E photoresist at 3500 rpm for 45
seconds (thickness=1.6 um).

3) Bake on hotplate at 90 °C for 180 seconds.

4) Expose in HTG contact mask aligner for 5.5 seconds (4.87 mW/cm?)
with CONTACT mask.

5) Bake on hotplate at exactly 110 °C for 150 seconds.

6) Blanket expose the wafer in HTG contact mask aligner for 65
seconds.

7) Develop in 100 ml of (1 : 1 = H,O : Microposit Developer) for 65
seconds.

8) Soak in DI bath immediately to stop the development.

9) Rinse in running DI for 1 minute.

10) Spin dry wafer for 45 seconds.

IX. Niobium Contact Deposition and Lift-off
1) Load sample in Leaker sputter system on a stainless wafer holder,
with a 3/64" thick, 2" diameter copper disk on the back of the wafer.
2) Check that the base pressure is about 3x10” Torr before deposition.
3) Turn on all cooling water supplies.
4) Presputter Nb from the 2" torus dc magnetron sputter gun for 3
minutes (following the presputtering procedure I1.4).
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Note that the parameters should be argon=11 mTorr and 152.7 sccm;
290 W, 290 V, 1 A.
a) Switch off the ion gauge;
b) Set conductance controller to 4.0;
c) Close the conductance controller switch;
d) Close the CHAM INTERLOCK valve;
e) Switch on station gas AR3;
f) Switch on the capacitance manometer;
g) Switch on the flow controller (FC) main;
h) Switch on FC channel 1;
i) Turn the capacitance manometer controller to "AUTO",;
j) Set pressure to 11 mTorr;
k) Set the 1 kW switch to gun E (Niobium);
1) Switch on the 1 kW power supply;
m) Fix the setpoint at 40 W;
n) Switch on "OUTPUT" to start plasma (light violet);
0) Increase the setpoint to about 330 W (Note that power will only
reach ~290 W with shutter closed);

p) Presputter for 3 minutes;
q) Decrease the setpoint to 40 W;
r) Set pressure to 0 mTorr;
s) Open the CHAM INTERLOCK valve.

5) Ion beam clean the wafer for 1.5 minutes (following the procedure
V.).

6) Sputter Nb to desired thickness:
Note that the parameters should be argon=11 mTorr and 152.7 scem;
330 W, 330 V, 1 A; rate=1.0 nm/s. Source to sample distance is
approximately 3 inches. The Nb thickness should be kept below 250
nm to reduce the probability of photoresist cracking or peeling during
the sputter deposition.
a) Close the CHAM INTERLOCK valve;
b) Set pressure to 11 mTorr;
¢) Switch on "OUTPUT" to start plasma (light violet);
d) Increase the setpoint at 330 W;
e) Open shutter E (sputtering time 240 seconds for Nb thickness of

240 nm);

f) To shut down, close shutter E;
g) Ramp down power level to zero;
h) Turn off the 1 kW power supply;
i) Turn the capacitance manometer controller to "CLOSE";
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j) Switch off the flow controller channel 1;

k) Switch off the flow controller main;

1) Switch off the capacitance manometer;

m) Switch off station gas AR3;

n) Open the CHAM INTERLOCK valve;
7) Remove the sample and turn off all cooling water supplies.
8) Lift-off the photoresist:

a) Soak in ACE/PH for at least 30 minutes to gently remove the Nb-

coated photoresist;

b) Soak in ACE with ultrasonic agitation for 20 seconds;

¢) Soak in MET with ultrasonic agitation for 20 seconds;

d) Rinse in running DI for 1 minute;

e) Blow dry wafer with Ny;

f) Spin dry wafer for 45 seconds;

X. Aluminum Trilayer Deposition
1) Clean the tantalum surface:

a) Soak in ACE with ultrasonic agitation for 20 seconds;

b) Soak in MET with ultrasonic agitation for 20 seconds;

c) Rinse in running DI for 1 minute;

d) Blow dry wafer with N;

e) Spin dry wafer for 45 seconds;

2) Load sample in Lesker sputter system on a stainless wafer holder,
with a 3/64" thick, 2" diameter copper disk on the back of the wafer.

3) Check that the base pressure is about 3x10”7 Torr before deposition.

4) Premelt aluminum evaporation filaments and tune the deposition rate
during the ion beam cleaning:

a) Al filaments are on sources 2 to 4 (big Al switch). Lambda power
supply is used for sources 1 to 3 and the big supply work for
source 4;

b) Crystal monitor on , enter 8, FLM# 1 (density = 2.70 g/cc, z-
ratio = 1.08, tooling factor = 399%, sensor = 1);

¢) All cooling water on,

c) Preheat Al filaments at (20 A, 0.16 V), (40 A, 0.4 V), (60 A, 1.3
V), (80 A, 2.0 V) for 2 minutes each. Al evaporation starts with
current around 80 A.

5) Ion beam cleaning of the wafer for 2 minutes (following the

procedure V.).
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6) Immediately, begin deposition of aluminum at a rate of about 20
nm/s for about 8 seconds to tie desired trap layer thickness of 160
nm:

a) Power supply to about 100 A;

b) J-arm to source n (no shutter over thermal evaporator),
¢) After evaporation turn away sample and decrease current to zero.

7) Cool the ion gun and aluminum filaments for 5 minutes.

8) Isolate the vacuum chamber and sample from all pumps.

9) Bleed in pure oxygen to a pressure of = 500 mTorr (as desired) in =
1 min:

a) Open Station gas 4;

b) Turn on channel 3, 100 sccm, should reach 500 mTorr within 30
sec;

¢) Turn off channel 3.

10) Oxidize at nominally room temperature for = 2 hours (as desired).

11) Open cryopumps directly to the chamber, pump on the chamber for
5 minutes, until the base pressure is below 2x10° Torr.

12) Warm up a new set of aluminum evaporation filaments; evaporate
the counterelectrode at 2 nm/s for about 40 seconds to the desired
counterelectrode layer thickness of 80 nm.

13) Immediately remove sample from vacuum chamber.

XI. Aluminum Trilayer Patterning

1) Clean the tantalum surface:
a) Soak in ACE with ultrasonic agitation for 20 seconds;
b) Soak in MET with ultrasonic agitation for 20 seconds;
¢) Rinse in running DI for 1 minute;
d) Blow dry wafer with Ny,
e) Spin dry wafer for 45 seconds;

2) Spin Shipley 1813 photoresist at 4000 rpm for 45 seconds
(thickness=1.25 um).

3) Bake on hotplate at 90 °C for 180 seconds.

4) Expose in HTG contact mask aligner for 16 seconds (4.87 mW/cm?)
with TRAP mask.

5) Develop in 100 ml of (1 : 1 = H,O : Microposit Developer) for 70
seconds.

6) Soak in DI bath immediately to stop the development.

7) Rinse in running DI for 1 minute.

8) Bake on hotplate at 110 °C for 10 minutes.
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9) Etchin 75 mlof (8 :4 : 1 : 1 = H;POy4 : CH,COOH : HNO; : H;0)
(white bottle, acid cabinet) at 45 °C for 83 seconds (rate = 3.7 nm/s,
endpoint determined by inspection).

10) Soak in DI bath immediately to stop the etching.

11) Rinse in running DI for 1 minute.

12) Blow dry wafer with N,.

13) Spin dry wafer for 45 seconds.

14) Test the result of this etch with the Dektak to make sure the tunnel

barrier has been etched through.

15) Pattern the counterelectrode electrode with positive resist as above
(XI.1-8 with COUNTERELECTRODE mask).

16) Etchin 7S mlof (8 : 4 : 1 : 1= H;POs : CH;COOH : HNO; : H,0)
(white bottle, acid cabinet) at 25 "C for 120 seconds (rate = 7.6
nm’s).

17) Soak in DI bath immediately to stop the etching.

18) Rinse in running DI for 1 minute.

19) Blow dry wafer with N,.

20) Spin dry wafer for 45 seconds.

21) Test the result of this etch with the Dektak.

XIIL. SiO Patterning and Deposition

1) Pattern the insulating layer with negative resist as above (VIII. with
VIA mask).

2) Load sample in Lesker sputter system on a stainless wafer holder,
with a 3/64" thick, 2" diameter copper disk on the back of the wafer.
This disk should be fastened to the wafer with Dow Corning vacuum
grease. The base pressure should be less than 3x10”7 Torr before the
deposition.

3) Preheat the special SiO evaporation boat (R. D. Mathis model SO-
10), and evaporate at 1.5 nm/s for about 167 seconds to the desired
insulating layer thickness of 250 nm (>150 nm gives a pinhole-free
insulating film):

a) Use DC (Lambda) power supply and SiO boat at source 1;

b) Crystal monitor on, enter 8, FLM# 2 (density = 2.13 g/ce, z-ratio
= (.87, tooling factor = 270%, sensor = 1);

¢) All cooling water on;

d) Preheat SiO boat at (100 A, 0.5 V) and (200 A, 1.2 V) for 3
minutes (SiO starts to evaporate around 300 A). SiO is a getter, so
the pressure will drop about one order of magnitude when crud on
SiO is gone and SiO is being evaporated,
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¢) Turn DC power supply to about (330 A, 2.4 V);
f) Turn J-arm to source 1 (no shutter over thermal evaporator);
g) Crystal monitor thickness and rate are 1/2 of the actual thickness
and rate.
4) Immediately remove the sample from the vacuum chamber.
5) Soak in ACE/PH for at least 30 minutes to gently remove the SiO-
coated photoresist.
6) Ultrasound agitation for 20 seconds to ensure liftoff of junction via
regions.
7) Clean the sample back and the copper disk with NMP to remove the
vacuum grease, scrubing them if necessary.
8) Clean the sample:
a) Soak in ACE with ultrasonic agitation for 20 seconds;
b) Soak in MET with ultrasonic agitation for 20 seconds;
c¢) Rinse in running DI for 1 minute;
d) Blow dry wafer with N»;
e) Spin dry wafer for 45 seconds;
9) Verify liftoff with microscope.

XIII. Aluminum Wiring Deposition and Patterning

1) Pattemn the wiring layer with negative resist as above (VII. with
WIRINGX mask).

2) Deposit the wiring layer as above at a rate of 3 nm/s (X. 2-7) for
about 100 seconds to the desired wiring layer thickness of 300 nm.

3) Immediately remove the sample from the vacyum chamber.

4) Soak in ACE/PH for at least 30 minutes to gently remove the Al-
coated photoresist.

5) Ultrasound agitation for 20 seconds to ensure liftoff.

6) Clean the sample back and the copper disk with NMP to remove the
vacuum grease, scrubing them if necessary.

7) Clean the sample:
a) Soak in ACE with ultrasonic agitation for 20 seconds;
b) Soak in MET with ultrasonic agitation for 20 seconds;
c) Rinse in running DI for 1 minute;
d) Blow dry wafer with Ny;
e) Spin dry wafer for 45 seconds;

8) Verify liftoff with microscope.
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A

ppendix B:

Important Runs and Device Parameters

Important Runs

Date Device Significance
6/23/99 OPS-F99-6B First detection of single optical/ UV photons
12/14/99  OPS-F99-6B Achieve R~12 at 5 eV
1/5/00 OPS-F99-6B Achieve R~12 at 5 eV for second time
10/12/00  OPS-EQ0-6B Measurement of thermodynamic fluctuations
8/28/01 OPS-E00-7A First meas. of non-back. device with laser
3/5/02 OPS-E00-10A  Detailed meas. of non-back. resolution

Wafer Parameters
Layer F99 Thickness (nm) E00 Thickness (nm)
Silicon Wafer 305 um 510 pm
Si0, Buffer 600 300
Absorber (Ta) 570 545
Contact (Nb) 240 225
Trap 160 200
CounterElec. 80 80
Insulator 270 220
Wiring 365 275

Important Devices
Device Sing./Doub. Absorber (um?) A ggmzl Back/Non
OPS-F99-6B Double 10x100 1 Back
OPS-E00-6B Double 10x100 100 Back
OPS-E00-7A  Single 10x100 100 Non
OPS-E00-10A  Single 20x50 100 Converted
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