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Université Paris-Sud, 91405 Orsay, France

We present the first measurements of the third moment of the voltage fluctuations in a con-
ductor. This technique can provide new and complementary information on the electronic
transport in conducting systems. The measurement was performed on non-superconducting
tunnel junctions as a function of voltage bias, for various temperatures and bandwidths up to
1GHz. The data demonstrate the significant effect of the electromagnetic environment of the
sample. We also present a new setup that allows to measure the frequency dependence of the
third moment down to very low temperature.

1 Introduction

Transport studies provide a powerful tool for investigating electronic properties of a conductor.
The I(V ) characteristic (or the differential resistance Rdiff = dV/dI) contains partial infor-
mation on the mechanisms responsible for conduction. A much more complete description of
transport in the steady state, and further information on the conduction mechanisms, is given
by the probability distribution of the current P , which describes both dc current I and the
fluctuations δI = I(t) − I. The current fluctuations can be characterized by the moments of
the probability distribution P of order two and higher. However, until now only the second
moment has been measured in the many systems studied 1. In this article we report the first
measurements of the third moment of the voltage fluctuations across a conductor,

〈
δV 3

〉
, where

δV = V (t) − V represents the voltage fluctuations around the dc voltage V (see also 2); 〈.〉
stands for time averaging, or equivalently for averaging over the distribution P . Below we relate〈
δV 3

〉
to

〈
δI3

〉
. Our experimental setup is such that the sample is current biased at dc and low

frequency but the electromagnetic environment has an impedance ∼ 50 Ω within the detection
bandwidth, 10 MHz to 1.2 GHz. Our results are in agreement with a recent theory that considers
the strong effect of the electromagnetic environment of the sample 3. Moreover, we show that
certain of these environmental effects can be dramatically reduced by signal propagation delays
from the sample to the amplifier. Finally, we present a new experimental setup which allows to
measure the third moment of voltage fluctuations at finite frequency, i.e. with one frequency
larger than an interesting energy scale, like the bias voltage or the temperature.

We present the theoretical overview first for the case of voltage bias 1. In a junction with
a low transparency barrier (which corresponds to our samples) biased by a dc voltage V , the
current noise spectral density (related to the second moment) is given for low frequency by :
SI2 = eGV coth(eV/2kBT)4 (in A2/Hz), where e is the electron charge and G is the conductance.
Only at high voltage eV À kBT does this reduce to the Poisson result SI2 = eI 4. The spectral
density of the third moment of the current fluctuations in a voltage biased tunnel junction of low
transparency is calculated to be: SI3 = e2GV , independent of temperature 5,6. By considering
how the Fourier components can combine to give a dc signal, we find that

〈
δI3

〉
= 3SI3(f2−2f1)2,

where the detection bandwidth is from f1 to f2. We have experimentally confirmed this unusual
dependence on f1 and f2 (data not reported here, see 2).

We next consider the effects of the sample’s electromagnetic environment (contacts, leads,
amplifier, etc.); the sample is no longer voltage biased. The environment emits noise, inducing
fluctuations of the voltage across the sample, which in turn modify the probability distribution
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Figure 1: Schematic of the experimental setup.

P . Moreover, due to the finite impedance of the environment, the noise emitted by the sample
itself induces also voltage fluctuations. We consider the circuit depicted in the inset of Fig. 2,
at first neglecting time delay along the coaxial cable. The noise of the sample of resistance R
is modeled by a current generator i. The voltage δV is measured across a resistor R0, which
has a current generator i0 of noise spectral density Si20

. One has δV = −RD(i + i0) with
RD = RR0/(R + R0) (R in parallel with R0). It has been recently predicted that the third
moment of P is significantly modified by the environment 3, leading to a spectral density:

SV 3 = −R3
DSI3 + 3R4

DSi20

dSI2

dV
+ 3R4

DSI2
dSI2

dV
(1)

The first term on the right is like that of the second moment. The negative sign results from
an increasing sample current giving a reduced voltage. Our detection method is insensitive to
Si30

. The environment noise i0 induces voltage fluctuations δV = −RDi0 across the sample.
These modify the sample’s noise SI2 (which depends on V (t)) as −RDi0dSI2/dV , to first order
in δV . This is the origin of the second term. The sample’s own current fluctuations also modify
the sample voltage to contribute similarly, giving the last term of Eq. (1). We present below
a simple derivation of how to include the effect of progation time in the coaxial cable, which
dramatically affects SV 3 .

2 Experimental setup and results

Two samples have been studied. Both are tunnel junctions made of Al/Al oxide/Al, using the
double angle evaporation technique7. In sample A (made by C. Wilson), the bottom and top Al
films are 50 nm thick. The bottom electrode was oxidized for 2 hours in pure O2 at a pressure
of 500 mTorr. The junction area is 15 µm2. In sample B (made by L. Spietz), the films are 120
nm and 300 nm thick, oxidation was for 10 min, and the junction area is 5.6µm2.

We have measured δV (t)3 in real time (see Fig. 1). The resistance of the sample is close
to 50 Ω, and thus is well matched to the coaxial cable and amplifier. After amplification at
room temperature the signal is separated into four equal branches, each of which carries a signal
proportionnal to δV (t). A mixer multiplies two of the branches, giving δV 2(t); a second mixer
multiplies this result with another branch. The output of this second mixer, δV 3(t), is then
low pass filtered, to give a signal which we refer to as D. Ideally D is simply proportional to
SV 3 , where the constant of proportionality depends on mixer gains and frequency bandwidth.
The last branch is connected to a square-law crystal detector, which produces a voltage X
proportional to the the rf power it receives: the noise of the sample

〈
δV 2

〉
plus the noise of the

amplifiers. The dc current I through the sample is swept slowly. We record D(I) and X(I); these
are averaged numerically. This detection scheme has the advantage of the large bandwidth it
provides (∼ 1 GHz), which is crucial for the measurement. We deduce SV 3 ∝ (D(I)−D(−I))/2.



The magnitude and sign of
〈
δV 3

〉
is obtained from measurements of D when the sample is

replaced by a programmable function generator.
Sample A was measured at T = 4.2K. Its total resistance (tunnel junction + contacts) is

62.6 Ω. The resistance RA of the junction is extracted from the fit of SV 2 as a function of
eV/kBT , with V the voltage drop across the junction. We find RA = 49.6 Ω. Rdiff is voltage
independent to within 1%. The gain of the amplification chain has been calibrated by replacing
the sample by a macroscopic 50 Ω resistor whose temperature was varied. We find η = 1 with
a precision of a few percent for both samples. SV 3(eV/kBT ) for |V | ≤ 10 mV is shown in Fig.
2 (top); these data were averaged for 12 days.

Sample B was measured at T = 4.2 K, 77 K and 290 K. The resistance of the junction
RB = 86Ω is almost temperature independent. The contribution of the contacts is ∼ 1 Ω. In
Fig. 2 (middle and bottom panels) the averaging time for each trace was 16 hours.

3 Interpretation

To analyze our results, consider again the circuit in the inset of Fig. 2, a simplified equivalent
of our setup. R0 ∼ 50 Ω is the input impedance of the amplifier, which is connected to the
sample through a coaxial cable of impedance R0 (i.e., matched to the amplifier) . The sample’s
voltage reflection coefficient is Γ = (R − R0)/(R + R0). In the analysis we present next we
neglect the influence of the contact resistance and impedance mismatch of the amplifier, but
we have included it when computing the theory to compare to the data. The voltage δV (t)
measured by the amplifier at time t arises from three contributions: i) the noise emitted by the
amplifier at time t: R0i0(t)/2 ; half of i0 enters the cable. ii) the noise emitted by the sample
(at time t−∆t, where ∆t is the propagation delay along the cable) that couples into the cable:
(1− Γ)Ri(t−∆t)/2 ; iii) the noise emitted by the amplifier at time t− 2∆t that is reflected by
the sample: ΓR0i0(t− 2∆t)/2 ; thus,

δV (t) = −R0

2
[i0(t) + Γi0(t− 2∆t)]− R

2
(1− Γ)i(t−∆t) (2)

For ∆t = 0, Eq. (2) reduces to δV = −RD(i + i0) with RD = RR0/(R + R0). Thus,
〈
δV 3

〉
=

−R3
D(

〈
i3

〉
+ 3

〈
i2i0

〉
+ 3

〈
ii20

〉
+

〈
i30

〉
) for ∆t = 0. In this equation the term

〈
i2i0

〉
leads to the

second term on the right of Eq. (1). The term
〈
i3

〉
yields the first term of Eq. (1), and, due to

the sample noise modulating its own voltage, the third term of Eq. (1) as well. The terms
〈
i30

〉

and
〈
ii20

〉
are zero. The result for ∆t = 0 corresponds to Eq. (1), which is a particular case of

Eq. (12b) of Ref. 3.
The finite propagation time does affect the correlator

〈
i2i0

〉
. The term Si20

in Eq. (1) has
to be replaced by (ΓSi20

+ Si0(t)i0(t−2∆t))/(1 + Γ), where Si0(t)i0(t−2∆t) is the spectral density
corresponding to the correlator 〈i0(t)i0(t− 2∆t)〉. For long enough ∆t this term vanishes, since
i0(t) and i0(t−2∆t) are uncorrelated. Thus, the effect of the propagation time is to renormalize
the noise temperature of the environment T0 = R0Si20

/(2kB) into T ∗0 = T0Γ/(1 + Γ).
We now check whether Eq. (1), with SI3 = e2I and modified as above to account for finite

propagation time, can explain our data. The unknown parameters are the resistance R0 and the
effective environment noise temperature T ∗0 . We checked that the impedance of the samples was
frequency independent up to 1.2 GHz within 5%. Fig. 2 shows the best fits to the theory, Eq.
(1), for all our data. The four curves lead to R0 = 42 Ω, in agreement with the fact that the
electromagnetic environment (amplifier, bias tee, coaxial cable, sample holder) was identical for
the two samples. We have measured the impedance Zenv seen by the sample. Due to impedance
mismatch between the amplifier and the cable, there are standing waves along the cable. This
causes Zenv to be complex with a phase that varies with frequency. We measured that the
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Figure 2: Measurement of SV 3(eV/kBT ) (solid lines). The dashed lines corresponds to the best fit with Eq. (1).
The dotted lines in the top plot correspond to the different contributions to SV 3 (see text). Inset of the middle

plot: schematics of the equivalent circuit used for the theoretical model.



modulus |Zenv| varies between 30 Ω and 70 Ω within the detection bandwidth, in reasonable
agreement with R0 = 42 Ω extracted from the fits.

We have measured directly the noise emitted by the room temperature amplifier; we find
T0 ∼ 100 K. The cable of length ∼ 2m corresponds to ∆t being large for the bandwidth we used.
As a consequence, the relevant noise temperature to be used to explain the data is T ∗0 . For
sample A, Γ = 0.11; including the contact resistance and cable attenuation one expects T ∗0 = 5
K ; for sample B, Γ = 0.26 and one expects T ∗0 = 21 K. A much shorter cable was used for
T = 290 K, and the reduction of T0 is not as significant. These numbers are in reasonably good
agreement with the values of T ∗0 deduced from the fits (see Fig. 2), and certainly agree with the
trend seen for the two samples. Clearly T ∗0 ¿ T0 for the long cable.

Our data are consistent with a third moment of current fluctuations SI3 being independent
of T between 4K and 300K when the sample is voltage biased, as predicted for a tunnel junction.
We have also clearly demonstrated the effect of the environment, through its noise and impedance
(data not reported here, see 2). This is of prime importance for designing future measurements
on samples with unknown third moment.

4 Towards measurements at finite frequency

In the previous sections we reported measurements in the GHz domain. The use of finite
frequency has been chosen in order to achieve good signal-to-noise ratio. However, 1GHz corre-
sponds to almost zero frequency for the sample, even at T=4.2K. It has been recently predicted
that SI3 at finite frequency has interesting properties: i) In any system, one might expect
a crossover from classical to quantum noise at frequencies f of the order of the bias voltage
and/or the temperature, as is seen for SI2

8. Contrary to the second moment, the third moment
vanishes at zero voltage, and thus has no voltage-independent contribution (coming from vac-
uum fluctuations). Since the voltage-dependent part of SI2 vanishes at hf À eV, kBT one might
expect the same result for SI3 . In contrast, the prediction is that SI3 for a tunnel junction is
frequency independent 9. ii) In systems with an intrinsic dynamic characterized by a time scale
τD (e.g., the dwell time of a cavity, the diffusion time of a disordered wire), a dispersion in SI3 at
f ∼ τ−1

D has been predicted, which does not appear in SI2
10. iii) The effect of the environment

in the quantum regime has to be revisited; the distinction between absorption/emission of pho-
tons might be relevant. iv) The definition of the third moment in terms of quantum operators
raises the problem of their time ordering 5. A crossover from the Keldysh ordered to the fully
symmetric version of SI3 might occur at finite frequency 11.

Introducing the Fourier transform i(f) of δI(t), and disregarding the problems of ordering the
current operators , one has SI3(f, f ′) = 〈i(f)i(f ′)i(−f − f ′)〉. The setup of Fig. 1 corresponds
to integrating the frequencies f and f ′ between f1 and f2. This setup cannot be used to measure
e.g. SI3(0, f) due to the broadband integration. In order to perform such a measurement we
have constructed the setup of Fig. 3a. The signal δV (t) is split into two frequency bands,
LF=]0, f3] and HF=[f1, f2]. The voltage is squared in the HF band (left branch of Fig. 3a) with
a high speed tunnel diode, then low-pass filtered with a cutoff f3. Thus one has products of the
form i(f)i(−f ′) at the end of the HF branch. This result is multiplied by a mixer to the LF
branch, then low-pass filtered to get a dc signal. This signal corresponds to SV 3(0, f̄) if (f2−f1)
and f3 are small enough, with f̄ ∼ (f1 + f2)/2. f1 and f2 can be varied by changing the various
fiters.

The measurement of sample A at T = 4.2K and T = 50mK with the new setup operating
in the LF=10-200MHz and HF=1-2.4GHz bandwidths is presented in Fig. 3b. We find subtle
but interpretable new results. The fit of these data with eq. (1) leads to R0 = 40Ω and T ∗0 (T =
4.2K) = −0.4K. The slope of SV 3 at high voltage is found to be temperature independent, like
it is between 300K and 4.2K (see Fig. 2). The negative T ∗0 comes from the Johnson noise of
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Figure 3: (a) Setup for the measurement of SV 3(0, f̄). The sample, bias tee and amplifiers have been omitted,
see Fig. 1. (b) Measurement of SV 3(0, f̄ ∼ 1.5GHz) on sample A at T = 4.2K and T = 50mK.

the 12Ω contact resistance. The current fluctuations emitted by the contact result in currents
of opposite signs running through the sample and the amplifier. As a consequence, the contact
contributes to T ∗0 with a negative sign. Since we use in this new setup a cryogenic amplifier
with low noise temperature T0, and since the Johnson noise of the contact is not affected by
the propagation time, its contribution dominates T ∗0 at 4.2K. We indeed observe a sign reversal
of T ∗0 when cooling the sample below 1K, since the noise of the amplifier dominates at low
enough temperature (see Fig. 3b). The non-linear behavior at low voltage at T=4.2K is similar
to the one observed at room temperature with the previous setup, see Fig. 2, i.e. when the
noise emitted by the sample is larger than the noise emitted by the amplifier, revealing the
contribution of the feedback of the environment. The study of the regime hf > eV requires the
use of a higher frequency bandpass filter in the HF branch, and is in progress.
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10. K.E. Nagaev, S. Pilgram and M. Büttiker, Phys. Rev. Lett. 92, 176804 (2004). S.
Pilgram, K.E. Nagaev and M. Büttiker, cond-mat/0401632.
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