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ABSTRACT We characterize the energy loss of the nonequilibrium electron system in individual metallic single-walled carbon
nanotubes at low temperature. Using Johnson noise thermometry, we demonstrate that, for a nanotube with Ohmic contacts, the dc
resistance at finite bias current directly reflects the average electron temperature. This enables a straightforward determination of
the thermal conductance associated with cooling of the nanotube electron system. In analyzing the temperature- and length-
dependence of the thermal conductance, we consider contributions from acoustic phonon emission, optical phonon emission, and
hot electron outdiffusion.
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Carbon nanotubes are attractive for a number of
device applications because of their ability to support
extremely large current densities, of order 109

A/cm2.1 Such large current densities can lead to significant
Joule heating, and hence self-heating effects are important
in determining the performance limits of nanotube-based
devices. These self-heating effects also provide a tool for
studying the nonequilibrium electron properties of this
unique one-dimensional conductor. Specifically, we use Joule
heating to study the inelastic processes by which the nano-
tube electron system loses energy to the environment. We
focus on a high-quality individual single-walled carbon nano-
tube (SWNT) on an insulating substrate below room tem-
perature. We analyze our results in terms of theoretical
predictions for acoustic phonon emission, optical phonon
emission, and hot electron outdiffusion.

Several previous works have studied heating effects in
individual SWNTs at room temperature and above. Park et
al. report current-voltage curves of a high-quality individual
SWNT on an insulating substrate at a bath (substrate) tem-
perature Tb ) 300 K.2 At high bias, current saturation due
to optical phonon emission is observed, consistent with
previous studies.1 At low bias, the inferred electron mean
free path is consistent with the calculated mean-free path
for electron-acoustic phonon scattering. Other works have
studied the effects of Joule and optical heating on the
nanotube lattice temperature, which can differ from the
electron temperature. Pop et al. and Maune et al. estimate
the phonon interface thermal conductance between an
individual SWNT and an insulating substrate from measure-
ments of electrical breakdown.3,4 Hsu et al. use the shift of

the G band Raman frequency to infer the local phonon
temperature in a suspended SWNT heated above room
temperature by laser illumination,5 enabling a comparison
of the contact and the internal thermal resistance. Shi et al.
use a scanning thermal microscope to determine the local
phonon temperature along the length of a Joule-heated
individual SWNT on an insulating substrate at Tb ) 300 K.6

In the present work, we measure the average electron
temperature of a Joule-heated nanotube. We focus on the
low temperature regime, 4 K < T < 200 K. Lower tempera-
tures result in greater thermal decoupling of the electron and
phonon systems, facilitating the study of low-energy inelastic
processes of the electron system. We compare our results to ex-
trapolations of the previous higher temperature measurements.

The nanotube studied in this work was grown using
chemical vapor deposition on a degenerately doped silicon
(Si) substrate with a 500 nm thick oxide (SiO2). The growth
procedure produces nanotubes that are up to millimeters in
length.7 Palladium electrodes are then deposited at various
separations along an individual nanotube. The Si substrate
is used as a global back gate. We report two-terminal
electrical measurements of nanotube segment lengths of 2,
5, 20, and 50 µm, all of which are separately contacted
sections of the same nanotube. The diameter of this nano-
tube is 2.0 ( 0.2 nm, measured with an atomic force
microscope,8 and the saturation current was measured to
be <30 µA, ensuring that it is an individual single-walled
tube.1 It is a small band gap (<100 meV) quasi-metallic
nanotube of unknown chirality. This is the same nanotube
referred to as sample M1 in ref 8. The properties reported
in that previous work were found to be the same in the
present work. All measurements were conducted at a back
gate voltage of -30 V, where the two-terminal conductance
is a maximum and is insensitive to small variations in the
gate potential.
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The dc resistance, Rdc ) Vdc/Idc, is shown in Figure 1 as a
function of temperature for the 5 µm long nanotube section
measured with a small bias current (Idc ) 0.3 µA). Measure-
ments of all four nanotube lengths indicate a contact resis-
tance Rc ≈ 8 kΩ, close to the quantum-limited two-terminal
contact resistance of RQ/4 ) h/4e2 ≈ 6.4 kΩ for a one-
dimensional channel with four subbands, and an internal
resistance Rint ≈ 1 kΩ/µm at 4 K that increases to ≈12 kΩ/
µm at 300 K; these same results were also seen in ref 8. The
approximately linear temperature dependence of the dc
resistance observed above 50 K is consistent with electron-
acoustic phonon inelastic scattering.2,9

In Figure 1 (inset) we plot the measured dc resistance of
the 5 µm nanotube as a function of Idc at bath temperatures
Tb ) 4.2 and 77 K. For measurements at Tb < 20 K, a local
maximum in Rdc is seen at zero bias current. This zero-bias
anomaly (ZBA) has been discussed in a number of previous
works and has alternatively been attributed to a reduced
density of states for tunneling into a Luttinger liquid1,10 or
to Coulomb blockade.11,12 In either case, the ZBA is related
to non-Ohmic contacts. At Tb ) 4.2 K, as the bias current is
increased above 0.5 µA, the contacts recover Ohmic behav-
ior and Rdc displays a monotonic increase with increasing
bias current. We measure up to Idc ) 5 µA, which is large
enough to show significant heating effects but still well below
the saturation current.

The increase in Rdc with increasing Idc is due to Joule
heating of the electron system in the nanotube. We use
Johnson noise to directly determine the average electron
temperature as a function of Idc. This allows us to establish
that the dc resistance is a measure of the average electron
temperature. Thus, the Rdc(Tb) data can be used to assign a
temperature to the electron system in the Rdc(Idc) data. This
should be useful for other researchers, as the Rdc(Idc) data
are much easier to collect than the Johnson noise data.

The understanding of the Johnson noise measurements
is as follows. For a resistor with a uniform electron temper-
ature Te, the Johnson noise power coupled into a matched
load is, in the low-frequency limit (hf , kBTe), PJ ) kBTeB,
where B is the measurement bandwidth. The quantity
PJ/kBB is the Johnson noise temperature TJ, and for a spatially

uniform electron temperature TJ ) Te. For a temperature-
dependent resistor with a spatial temperature distribution
(and no contact resistance), TJ ) ∫0

LTe(x)r(x) dx/Rtot, where
Te(x) and r(x) are the position-dependent electron temper-
ature and the resistance per unit length, respectively, and
Rtot is the total resistance.

To find the average electron temperature, we need to
model the electron temperature profile Te(x) within a Joule-
heated nanotube. To do this, we use the one-dimensional
steady-state heat flow equation

The first term is due to hot electron diffusion, with x the
position along the length of the nanotube, 0 e x e L. This
model is valid provided that L is greater than the inelastic
electron-electron scattering length, which implies a well-
defined local electron temperature Te(x). Previous measure-
ments of the nanotube electron energy distribution via
tunneling spectroscopy found that a nonthermal electron
distribution is only exhibited at temperatures well below 4
K for L) 1-2 µm.13 Hence, the assumption of a well-defined
local electron temperature should be valid for all samples
over the entire temperature range studied in the present
work.

The electron diffusion thermal conductance per unit
length gdiff(x) is determined from the Wiedemann-Franz
law, gdiff(x) ) LTe(x)/r(x), with L the Lorenz number. We
approximate the internal resistance per unit length r(x) )
RTe(x)/L, with R the slope of a linear fit to the Rdc(Tb) data in
Figure 1 above 50 K. The Joule power per unit length
dissipated internal to the nanotube is pNT ) Idc

2r(x). We
assume that the power dissipated by the contact resistance
remains in the relatively massive contacts, which act as
thermal reservoirs. The total contact resistance (for the two
contacts in series) is Rc, so the total two-terminal resistance
is R ) Rc + ∫0

Lr(x) dx. pph(Te) is the power removed from the
nanotube by phonon emission per unit length. The thermal
conductance Gc across the contact at x ) 0 is incorporated
via the boundary condition

Gc is determined from the Wiedemann-Franz law, Gc )
LTavg/(Rc/2), with (Rc/2) ≈ 4 kΩ the electrical resistance at
each contact. A similar expression is used for the contact at
x ) L. For electron thermal transport across the contacts,
we assume that the temperature in the Wiedemann-Franz
law for Gc is the average of the temperatures on each side
of the barrier, Tavg, as is the case for a quantum point
contact.14

FIGURE 1. dc resistance of a 5 µm long nanotube as a function of
temperature measured with a dc bias current of 0.3 µA. Inset: dc
resistance as a function of dc bias current at bath temperatures of
4.2 and 77 K.
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To analyze the Johnson noise data, we solve eqs 1 and 2
for Te(x). pph(Te) is determined from measurements of the
longest nanotube segment, for which end effects are small
(discussed later). For simplicity, we assume that pNT is
spatially uniform. We find that the electron temperature
variation along the length of the nanotube is always smaller
than the temperature change across the contacts. Thus, r(x)
is relatively constant, so pNT(x)) Idc

2r(x) is also fairly uniform.
As an example, we show in Figure 2 (inset) the calculated
electron temperature profile for the 5 µm nanotube sample
at Tb ) 77 K with Idc ) 1.5 and 2 µA. For Idc ) 2 µA, the
calculated temperature profile corresponds to an average
electron temperature Te ) 118.2 K. We can also use the
calculated Te(x) to determine r(x), and then calculate TJ using
the formula above. This yields TJ ) 118.5 K. Hence, we can
take the measured Johnson noise temperature to be equal
to the average electron temperature to a good approximation.

To measure the Johnson noise, we employ a differential
measurement technique with a bias current that switches
between zero current and finite current at low frequency.
The noise is measured with a 50 Ω microwave amplifier
through a bandpass filter with a 10 MHz bandwidth centered
at approximately 50 MHz. This avoids 1/f noise, which has
been shown to be significant in carbon nanotubes and to
depend on the bias current.15 We account for the coupling
mismatch between the nanotube and the 50 Ω amplifier at
each value of bias current. The amplifier output is coupled
to a diode to measure power, and the diode response is read
on a lock-in amplifier that is ac synchronized to the on-off
bias current. As before, we assume that only Rint is heated
by the bias current and that Rc is temperature-independent.
We have also calculated the change in noise due to intrinsic
thermodynamic fluctuations, which result in resistance
fluctuations due to the nanotube’s temperature-dependent
resistance.16,17 We found that this is more than an order of

magnitude smaller than the change in Johnson noise and
hence is neglected in the present analysis.

We compare in Figure 2 the temperature increase of the
5 µm nanotube sample determined from the Johnson noise
measurement and from using the thermal equilibrium
Rdc(Tb) data (for Idc ≈ 0) to assign a temperature to the
nonequilibrium electron system from the Rdc(Idc) data. A bath
temperature of 77 K is used to avoid the ZBA feature. The
standard deviation of the measured Johnson noise temper-
ature is approximately the same size as the data points. We
see reasonable agreement between the temperatures deter-
mined using these two different approaches. We conclude
that, away from the ZBA feature, the dc resistance is a
measure of the average electron temperature for both the
equilibrium (Idc ≈ 0) and the nonequilibrium (large Idc) cases.
We note that this technique of using the electrical resistance
as a thermometer of the electron system has been studied
previously in thin metal films18 and is the operating principle
of the bolometric detector.16,17

As seen in Figure 2, the average electron temperature Te

can be determined from Rdc(Idc). We can then use this to
determine the thermal conductance for cooling of the elec-
tron system. The total Joule power dissipated internal to the
nanotube is PNT ) Idc

2Rint. The thermal conductance for
cooling of the electron system in the nanotube is G )
dPNT/dTe. This is plotted as a function of Te in Figure 3 for all
four nanotube lengths. A smoothing function is applied to
the data to minimize the noise from the numerical dif-
ferentiation. Although we measure at Tb ) 4.2 K, we only
present G for Te > 20 K because of the ZBA feature at lower
temperature.

At temperatures above 120 K, G increases rapidly with
increasing temperature, approximately as Te

5. We discuss
that regime later and focus here on the behavior for Te < 120
K. In this regime, we first consider the length dependence
of the measured thermal conductance. For sufficiently short
nanotubes, the dominant cooling path will be the outdiffu-
sion of electrons at temperature Te > Tb into the contacts.
For long nanotubes, the dominant cooling path will instead
be into the substrate via the emission of acoustic phonons.
These parallel cooling paths are shown schematically in the

FIGURE 2. Average electron temperature Te of the 5 µm nanotube
as a function of bias current at Tb ) 77 K determined from Johnson
noise thermometry (squares) and from the dc data in Figure 1 (solid
line). The corresponding bias voltage is shown on the top axis. Inset:
calculated electron temperature profile for 5 µm nanotube at Tb )
77 K with Idc ) 1.5 and 2 µA.

FIGURE 3. Thermal conductance as a function of average electron
temperature for 2, 5, 20, and 50 µm nanotube lengths at a bath
temperatureof4.2K.DashedlinesillustrateT,T2,andT5dependencies.
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inset of Figure 4a. In this simplified model, the electron
system is represented by a single temperature Te and the
contacts and substrate are thermal reservoirs at a temper-
ature Tb.

We plot in Figure 4a the measured thermal conductance
as a function of length at Te ) 80 K and Tb ) 4 K. The data
are fit to the sum of the two parallel thermal conductances
seen in the inset schematic, G ) Gsub + 2Gc. In calculating
the electron temperature profile (discussed previously), we
found that cooling via electron outdiffusion is limited largely
by the contact thermal conductance Gc rather than by the
nanotube’s internal thermal conductance for electron diffu-
sion. Hence the total conductance for cooling via outdiffusion
is simplified as 2Gc, where the factor of 2 comes from
considering diffusion out both ends of the nanotube. Gc is
calculated from the Wiedemann-Franz law for each con-
tact, as before. For Te ) 80 K and Tb ) 4 K, we determine
from the fit in Figure 4a that Gc ≈ 0.25 nW/K, in good
agreement with the computed Wiedemann-Franz value of
0.26 nW/K. In Figure 4a, Gsub is treated as a fitting parameter,
with the requirement that it scales linearly with the nanotube
length. We find Gsub ≈ (1.2 × 10-4L) in units of W/K, where
L is nanotube length in meters. The crossover length be-
tween diffusion dominated and substrate dominated cooling
is L ≈ 3 µm. This crossover length does not vary significantly
with Te because both Gsub and Gc display an approximately
linear dependence on Te (for Te . Tb).

Next we consider the temperature dependence of the
thermal conductance data, again for Te < 120 K. We focus
on the longer nanotube lengths (20 and 50 µm), for which
end effects should be small, allowing us to neglect Gc. Here
we consider the thermal model illustrated in Figure 4b.
Cooling into the substrate, which was previously described
by a single thermal conductance Gsub, is separated into two
thermal elements in series. The first is the thermal conduc-
tance between the electron system and the phonon system

in the nanotube, Ge-ph. The electron system is described by
a temperature Te and a heat capacity Ce; the phonon system
in the nanotube is described by a temperature Tph and a heat
capacity Cph. The phonon system in the nanotube is coupled
to the substrate via the phonon interface thermal conduc-
tance Gint. Once phonons enter the substrate, they rapidly
disperse into the large volume. The thermal resistances add,
so Gsub

-1 ) Ge-ph
-1 + Gint

-1. This type of model has previously
been used to describe the cooling of the electron system in
metal films and long wires.16-18

The total thermal conductance G is related to the energy
relaxation time τen through the heat capacity C, τen ) C/G.
This is the time scale for an excited electron, with a typical
excitation energy ∼kBTe, to relax back to the Fermi energy
EF. The energy relaxation time due to electron-acoustic
phonon scattering is τen,e-ph ) Ce/Ge-ph, where Ce is the
electronic heat capacity, calculated for a metallic SWNT as
Ce ) 8π2LkB

2Te/(3hvF).19 A different but related physical
quantity is the electron-acoustic phonon scattering time
τe-ph. Due to momentum and energy conservation in this 1D
system, the electron momentum is reversed by each scat-
tering event.2 τe-ph is predicted to be inversely proportional
to temperature, with τe-ph ∼ 1 ps at room temperature.2,9 If
each acoustic phonon scattering event results in an energy
change ≈kBTe, then τen,e-ph ≈ τe-ph ∝ T-1. We believe that this
is the case in our experiment, due to the use of a large gate
voltage. (For further details, see the Supporting Information.)
Hence, if τen ≈ τe-ph, Ge-ph ≈ Ce/τe-ph ∝ Te

2. For L ) 50 µm and
Te ) 100 K, this predicts Ge-ph ∼ 10-8 W/K. This value is
approximately consistent with the measured G for L ) 50
µm at Te ) 100 K, although the temperature dependence of
the measured G is somewhat weaker than Te

2.
We next consider the contribution of the phonon inter-

face conductance Gint. As our experimental approach does
not measure the phonon temperature, we compare our
results to previous experimental determinations of Gint at
higher temperature. Shi et al. determine the lattice temper-
ature in individual Joule-heated single-walled nanotubes with
lengths ≈2-3 µm on SiO2 at Tb ) 300 K. In that work, they
found an increase of 80-240 K at the center of the nanotube
for ≈12.5 µW dissipated Joule power, corresponding to Gint

∼ 10-7-10-8 W/K.6 Measurements of the variation of Tph

along the length of the nanotube established that approxi-
mately 80% of the heat loss was into the substrate (Gint), with
the remainder into the contacts. Thus, for a much longer
nanotube, as we have studied, cooling by phonons out the
ends will be negligible.

If we extrapolate our measured G(Te) from below 120 K
(below the onset of the Te

5 behavior) up to Te ≈ 400-500
K, we obtain values of G per unit length that are ap-
proximately consistent with the experimental determination
of Gint from ref 6. This extrapolation assumes that the
temperature dependence of G for small current remains
essentially unchanged from 100 to 400 K, which is not yet
established. Calculations of the heat flow through a nano-

FIGURE 4. (a) Thermal conductance as a function of nanotube length
at Te ) 80 K and Tb ) 4 K. Solid line is a fit the thermal model
illustrated in the inset. In this model, the electron system loses
energy via two parallel thermal paths corresponding to cooling into
the contacts via electron outdiffusion (2Gc) and cooling into the
substrate via phonon emission (Gsub). (b) Thermal model for cooling
of the nanotube electron system for long nanotube lengths and low
bias currents. The phonon system in the nanotube is coupled to the
electron system via the electron-acoustic phonon thermal conduc-
tance Ge-ph. The phonon system in the nanotube is coupled to the
substrate via the phonon interface thermal conductance Gint.
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scale constriction at the nanotube-substrate interface pre-
dict a thermal conductance that scales linearly with the
phonon heat capacity and hence with Tph.20 However, the
interface between the nanotube and the substrate may
be more complex than a nanoscale constriction, and hence
the temperature dependence of Gint may differ from the
linear prediction.

Estimates of both Ge-ph and Gint for our temperature range
yield values that are roughly consistent with our measured
value of G. This suggests that both mechanisms are relevant
to our measured thermal conductance. Ge-ph is predicted to
scale as Te

2, and simple theory predicts that Gint is linear in
temperature. The observed temperature dependence of G
at low bias current is in between these two predictions. For
L ) 50 µm, the length for which end effects should be
smallest, the temperature dependence of the measured G
appears to transition from approximately Te

2 below 50 K to
approximately Te above 50 K (Figure 3). This is consistent
with Gsub being limited by Ge-ph ∝ T2 below 50 K and by Gint

∝ T above 50 K.
We now focus on the behavior above 120 K, where the

thermal conductance begins to increase rapidly with increas-
ing temperature, approximately as Te

5 (Figure 3). This
behavior could be due to the bias potential between inelastic
scattering events exceeding the threshold energy for optical
phonon emission. The electron mean free path le can be
determined from le ) (h/4e2)/(Rint/L).2,8 At the onset of the
Te

5 behavior, the mean free path is approximately 2 µm.
The potential energy drop over a length of 2 µm is ≈20 meV
for all four lengths at this onset. Thermal broadening of
the energy distribution is approximately kBTe ≈ 10 meV at Te

) 120 K. The resulting energy of ≈30 meV is close to the 50
meV predicted threshold energy for the emission of surface
polar phonons (SPPs) directly into the SiO2 substrate.21-23

Emission of optical phonons internal to the nanotube, in
comparison, has a predicted threshold energy of 160-200
meV.1,2 This 160-200 meV threshold energy is significantly
larger than that inferred by the data, and only the emission
of surface polar phonons directly into the SiO2 substrate is
approximately consistent with the behavior we observe
above 120 K. Shorter nanotubes have a somewhat lower
onset temperature. These nanotubes have a larger thermal
conductance due to cooling by the contacts. For the same
electric field per unit length in the shorter nanotubes, a lower
temperature is achieved. Thus, the onset of the SPP emission
should occur at lower temperatures for shorter nanotube
lengths. We note that the approximately Te

5 dependence of
the thermal conductance in this regime is an empirical
observation.

Calculations of dc I-V curves in the presence of strong
SPP scattering found that the inverse current depends
linearly on the inverse applied field,24 Idc

-1 ) Is
-1 +

R0,intVint
-1, where Is is the saturation current due to SPP

scattering, R0,int is the internal nanotube resistance near zero
bias current, and Vint is the voltage drop internal to the

nanotube (excluding the contacts). Our measured dc I-V
curves agree well with this functional form for Idc > 3.5 µA.
Fitting to I-V curves measured at Tb ) 77 K, with Is as a
fitting parameter, we find Is ≈ 12 µA for all four nanotube
lengths. By comparison, ref 24 calculates Is ) 4.4 µA for a
(17,0) semiconducting nanotube on a quartz substrate at Tb

) 77 K. In this calculation, the doping level is 0.1 e/nm and
the tube-substrate separation is 3.5 Å.23 The difference in
Is is likely the result of the differences between this modeled
system and our measured sample. In particular, Is is strongly
dependent on the tube-substrate separation. We note that
the effects of SPPs have previously been observed in the
electrical transport properties of individual semiconducting
SWNTs on SiO2 at Tb ) 300 K25 but have not previously been
observed in a metallic nanotube or at substrate temperatures
below room temperature.

Finally, we propose an experiment for further elucidating
the limiting cooling mechanism for the longer nanotube
lengths in low-bias regime (Te < 120 K). The energy relax-
ation time τen could be measured directly by heating the
nanotube with a fast voltage pulse and measuring the
exponential decay of the resistance back to its equilibrium
value. Alternatively, τen could be measured in the frequency
domain via heterodyne mixing.16 If the limiting cooling
mechanism is acoustic phonon emission, then the relevant
heat capacity is the electronic heat capacity Ce ) 8π2LkB

2Te/
(3hvF),19 and τen ) τen,e-ph. For L ) 50 µm and Te ) 100 K,
τen,e-ph ) Ce/G ≈ 6 ps. If instead the cooling is limited by heat
escaping the phonon system, then the relevant heat capacity
is the phonon heat capacity Cph ≈ Ce(vph/vF),19 where the ratio
of the acoustic phonon velocity to the Fermi velocity vph/vF

≈ 1/50. Hence the time constant will be τen ) Cph/G ≈ 300
ps. Measuring this slower time constant is feasible,16 but it
requires a sample that, unlike the sample studied in the
present work, is designed without significant parasitic reac-
tance at microwave frequencies.

In addition to a direct measurement of the energy relax-
ation time, future measurements using these techniques
should further refine our understanding of the energy loss
mechanisms of the nonequilibrium nanotube electron sys-
tem. Promising avenues for further study include measure-
ments of suspended nanotube samples and measurements
of the dependence of the thermal conductance on gate
voltage. The techniques described here may also prove
useful in similar studies of inelastic scattering in other
conducting nanosystems.
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and the energy relaxation time, as well as an experimental
test of the thermal conductance. This material is available
free of charge via the Internet at http://pubs.acs.org.
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I. Test of experimentally-determined thermal conductance 

In the absence of non-thermal nonlinearities, the differential resistance dV/dI is related to 

the dc resistance Rdc = Vdc/Idc through the thermal conductance G,1 

 

1

1

dc
dc

dc

P dR

R G dTdV
R

P dRdI
R G dT

+
=

−
 (S1) 

 
where P is the dc Joule power, in this case the power dissipated internal to the nanotube, 

PNT. In Figure S1 we plot for the 5 µm nanotube at Tb = 4.2 K the differential resistance 

calculated from eq S1 using the experimentally-determined G as well as measured values 

of Rdc, PNT, and dR/dT. dV/dI is only calculated for Te > 20 K because of the ZBA feature 

at lower temperature. In this calculation, we assume that only Rint is heated and that Rc is 

a temperature-independent resistor. We also plot the measured dV/dI and Rdc as a 

function of Idc. The good agreement between the measured and calculated values of 

dV/dI, with no adjustable parameters, supports our experimental determination of the 

thermal conductance.   
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FIGURE S1. Measured and calculated differential resistance, as well as measured dc 
resistance, for 5 µm nanotube at Tb = 4.2 K. 
 

 

II. Comparison of energy relaxation and electron-phonon scattering times 

The energy relaxation time τen is the characteristic time for an excited electron, with a 

typical excitation energy ~kBTe, to relax back to the Fermi level EF. The electron-acoustic 

phonon time τe-ph is the characteristic timescale for an electron scattering event due to 

acoustic phonons. Due to momentum and energy conservation in the 1D nanotube, the 

electron momentum is reversed by each scattering event, as illustrated in Figure S2. The 

electron energy change per acoustic phonon scattering event depends on the Fermi level, 

which depends on the gate voltage. Due to the linear electron and phonon dispersion 

relations at low energies, the energy of an emitted acoustic phonon is Eph ≈ 2Eel(vph/vF).2 

The electron energy Eel has a range of approximately EF ± kBTe, where EF is defined 

relative to the band crossing. The ratio of the phonon velocity to the Fermi velocity 

(vph/vF) ≈ 1/50.2 Thus, for EF = 0, Eph ~ kBTe/25, and many scattering events are required 

to remove an energy of kBTe. This is illustrated schematically in Figure S2a. As EF is 

increased by applying a gate voltage, Eph will increase, as illustrated in Figure S2b. In the 

present work, we use a large gate voltage, -30 V. Accounting for gate hysteresis and 
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assuming a gate efficiency ~1%,3 we estimate EF ~ 0.1 eV. This yields Eph ~ kBTe in our 

experimental range. Hence, in the present work, τe-ph is believed to be approximately 

equal to the energy relaxation time τen. 

 

 
 
FIGURE S2. (a) Electron dispersion relation illustrating the emission of an acoustic 
phonon at zero gate voltage. (b) Electron dispersion relation illustrating the emission of 
an acoustic phonon at finite gate voltage. 
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