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We discuss the effect of the spin-dependent scattering on conductance fluctuations in the re-
gime where the spin-orbit scattering length /s, and the magnetic spin-flip scattering length /s are
comparable to the electron-phase-breaking length /,. In addition to affecting the magnitude of
the fluctuations, we find that the presence of spin-dependent scattering changes the characteristic
magnetic-field scale of fluctuations. Our results provide a simple way of interpreting experimental

results for any sample geometry.

Quantum coherence of electrons in disordered systems
has been studied' 3 extensively over the past few years.
Among the various manifestations of this coherence, con-
ductance fluctuations capture the essence of the physics
involved. Due to the electron spin, the magnitude of the
conductance fluctuations is expected to be affected by
spin-orbit scattering, Zeeman splitting, and spin-flip
scattering. There have been specific predictions for the
magnitude of conductance fluctuations in the presence of
these perturbations. It has been shown®™? that in the
presence of strong spin-orbit scattering, the magnitude of
the mean-square fluctuations is reduced by a factor of 4.
Feng® has derived a relatively complicated expression for
the conductance fluctuations in the presence of spin-orbit
scattering. We shall show below that his expression can
be simplified substantially when written in terms of the
singlet and triplet contributions, similar to the weak-
localization calculations.®!® This enables us to calculate
the characteristic magnetic field scale of the fluctuations,
which we find is affected by the presence of moderate
spin-orbit scattering. Our results should be particularly
useful to experimentalists who wish to analyze data on
conductance fluctuations in samples with moderate spin-
orbit scattering. We shall also discuss the effect of
scattering of electrons from magnetic impurities.

In order to calculate the fluctuations, we have to evalu-
ate? diagrams involving two conductivity loops [Fig.
1(b)]. In the absence of spin-dependent scattering, the
contribution of these diagrams, including both diffusion
(particle-hole) and Cooper (particle-particle) channels,
can be written as
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Here /, is the phase-breaking length, L is the length of the
sample in d dimensions, and g is the eigenvalue of the
momentum operator § for the geometry under considera-
tion. The term with the summation over ¢ in Eq. (1) is
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the contribution of the two diffusion (or Cooper) impurity
ladders A(g) shown in Fig. 1(b). To evaluate the effect of
spin-dependent scattering, we should consider the explicit
spin dependence of these impurity ladders. The calcula-
tion is similar to the one for weak localization,® except
that for conductance fluctuations, one does not allow mag-
netic scattering to connect the particle and hole (or parti-
cle and particle) lines of the ladder. This is because they
belong to two different conductivity loops which represent
two different measurements, and we do not expect the
magnetic impurity spin to remain static between measure-
ments.? Normal elastic impurity scattering and spin-orbit
scattering are allowed to connect the two loops, since we
do not expect the corresponding potentials to change be-
tween the measurements.

In what follows, we shall consider only the diffusion
channel in detail. The calculation for the Cooper channel
is the same, except for some minor differences. The total
scattering potential is®'0

Uy (k k') =U+U,S 6,5 +iUs(kXKk")- 045 . )

The first term is the elastic-scattering potential, the
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FIG. 1. Examples of diagrams used to calculate conductance
fluctuations: (a) a part of the diffusion (particle-hole) impurity
ladder; (b) one of the corresponding diagrams in the diffusion
channel for the calculation of conductance fluctuations. The di-
agram for the particle-particle (Cooper) channel would have the
arrows in the two loops pointing in the same direction.
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second the potential due to the impurity spin S, and the
third the spin-orbit potential. oy refers to the Pauli spin
matrix of the electron, k is the wave vector of the incident
electron, and k' the wave vector of the scattered electron.
The total scattering rate is given by

7' =27N(0) [U2+U§,ZI(Exi')f]2+UEZ<S,-2>]
1] 1
41— 3)
=710 +1 t715 .
N(0) is the electron density of states at the Fermi energy.
A single part of the particle-hole impurity ladder is shown
in Fig. 1(a). The cross denotes the scattering potential

without magnetic-impurity scattering. The diagram can
be evaluated to give

Fapys=[22N(0)] ~'[1g 18,405, + T (155 V0upos,],  (4)

where we have assumed isotropic scattering. [The factor
1+ arises because one does not sum over the directions i of
Eq. (3).] The impurity diffusion ladder is given by a
series of diagrams such as Fig. 1(a). The series can be
summed, and the result, in matrix form, is given by

A@)=F+2aN)Ft(1 —t/t,—Dgq*t)A(g), (5)

where D is the diffusion constant and F and A(g) are now
4x4 matrices. The phase-relaxation time 7, determines
the characteristic time of decay of the particle-hole
Green’s function in the absence of spin-dependent mecha-
nisms. Equation (5) can be rewritten as

2zN(0)tA(g) =[F' ~' = (1 —1/t,—Dq?o)I]1 7', (6)

where F'=2xN(0) tF and I is the unit matrix. Now, since
o1-a;=—2(J?—s}—s3), where s ;=1 0,2 and J=s,
—s; (the minus sign is because one of the o’s refers to a

hole), F' can be written in the J 2, K} lz,sz2 representation as

F'=(t/t0+ t/1s))] — % (1/155)J ? )
so that the singlet and triplet matrix elements are given by
Fi=(t/to+ /1) =1—(1/1,), (8a)
Fi=1—(t/7,) — 3 (t/1y) . (8b)

The corresponding matrix elements of A(g) are obtained
from

A =022N0)72] 7' [Dg?+ (z, )+ (z,7 D17, (9a)
A =[22N(0)72] ~'[Dg%+ (z, D+ (z7 D+ $ (zg D] .

(9b)

The diagrams for the conductance fluctuations involve
products of two diffusion ladders (or two Cooper ladders).
To see which matrix elements are allowed by spin conser-
vation, we should transform the matrix A into the s,,51;,
52,52, representation. In this representation,

(M+7»2) (11_7»2)
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Let us label spin indices of the top diffusion ladder by
(aBy8), as shown in Fig. 1(b). Then, the only indices of
the bottom ladder allowed by spin conservation are
(yéap). The diagrams for the conductance fluctuations
involve products of the form (aByd)Xx(ySaB). The only
six nonzero elements of the matrix A give rise to six terms,
the sum of which is 3(A;)2+ (A;)%. From Eq. (9), the ap-
propriate length scales for A; and A, are

AL [1—2‘=l¢_2+15_2, (10&)
Ay 7 2=1"24 072+ 4152 (10b)

Here as usual, /,=+/Dt,, lsc=~/Dts, and I =./Dz;.
The Cooper channel contribution is also split into singlet
and triplet parts, with the length dependence of the singlet
term given by /; and that of the triplet term by /5.

In the absence of spin-orbit and spin-flip scattering,
A=Ay =Ao=[22N(0)7%] "'[Dg?+(z, )] ~'. From Egq.
(1), the mean-square amplitude of the conductance fluc-
tuations is given by

(6G4U,))=
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With spin-orbit and spin-flip scattering, the mean-
square amplitude is given by

2

212

CaNBEL (+ Tad+ 1 ).
q q9

2
| €
(86G?%) [h

(12)

From Eq. (11), it is clear that this can be expressed as
(6G2) =3 (8G¢U N+ +(6G31,)), (13)

where (6G§(/,)) and (6G$(l,)) are given by Eq. (1), with
I, replaced by /; and /. Thus, the expression for the
mean-square amplitude of the conductance fluctuations in
the presence of spin-dependent scattering can be obtained
from the expression in the absence of spin-dependent
scattering merely by putting the appropriate singlet and
triplet length scales /, and /, in place of /,. This result is
valid for any experimental configuration. Equation (13)
yields the correct limiting behavior predicted in Refs. 4-8,
i.e., strong magnetic-impurity scattering destroys the con-
ductance fluctuations, whereas strong spin-orbit scattering
will reduce the amplitude by one half.

In experiments on weak localization, one can determine
Iy, I, and I; by fitting the weak localization magnetocon-
ductance to the full spin-dependent theory.® For the con-
ductance fluctuations, the quantity analogous to the
weak-localization magnetoconductance is the magnetic-
field autocorrelation function,

F(AB) =(6G(B)5G (B +AB)),

where the angle brackets denote an average over the mag-
netic field B. In the presence of spin-dependent scattering,
this function can also be split into singlet and triplet con-

tributions
F(AB) =% Fo(AB,l,)+ L Fo(AB, 1)) , (14)

where Fo(AB,l,) is the autocorrelation function in the ab-
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sence of spin-dependent scattering. Thus, if the form of
Fo(AB,1,) is known, one should be able to determine the
electron scattering lengths /,, /5, and /; by fitting the ex-
perimental autocorrelation function to Eq. (14). In pass-
ing, we note that Fo(AB,/,) at low magnetic fields is not
independent of the absolute magnetic field B, because of
the magnetic-field dependence of the particle-particle im-
purity ladder.? In addition, /, and /, may themselves be
field dependent, through the field dependence of the mag-
netic impurity scattering. Both these effects give rise to a
complicated magnetic-field dependence at low magnetic
fields. Thus, in order to facilitate comparison with theory,
it is better to measure the autocorrelation function at high
magnetic fields.

To illustrate the practical utility of these calculations,
we consider the specific example of a long one-dimen-
sional wire in the absence of energy averaging and
magnetic-impurity scattering. For this case Eq. (1)
yields?

2 3

Iy

i3 (15)

2
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Figure 2 shows the amplitude of the fluctuations as a
function of /, from Egs. (13) and (15) for /5,=0.5 um.
As expected, the amplitude of the fluctuations for /,>>/,
is half that for /, </, However, it is interesting to note
that the crossover from the weak spin-orbit-scattering lim-
it to the large spin-orbit-scattering limit is rather rapid:
for /,=3l,, we are already in the strong spin-orbit-
scattering limit.

The field dependence of the fluctuations can be charac-
terized by the half-width B, of the autocorrelation func-
tion F(AB), defined by F(B.) =% F(0). For a wire of
width W, in the absence of spin-dependent scattering, B.
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FIG. 2. Normalized amplitude of the conductance fluctua-
tions for a one-dimensional wire of length L as a function of the
ratio /4/ls, from Egs. (13) and (15), in the absence of energy
averaging and magnetic-impurity scattering. /s is 0.5 pm.
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is given by'!' B, =0.42d,/(,W). In the presence of
spin-orbit scattering, B. depends on the relative magni-
tudes of /,, /5, and /5. Figure 3 shows the ratio of B, to
B, as a function of /,/l, for a long wire with the same
parameters as in Fig. 2. In both the large and small spin-
orbit-scattering limits, B, approaches B¢, In the inter-
mediate regime, however, there is an enhancement of B,,
with a maximum of =1.22 at /,//;,=0.5. This means
that, when /,==/,, one cannot determine the phase coher-
ence length /, by measuring B, alone. To determine /,, it
is necessary to fit the measured field autocorrelation func-
tion to Eq. (14), using /,, /;, and [, as fitting parameters.

Experiments have been performed by Millo et al.'? on
two-dimensional GaAs/Al,Ga;-,As heterojunctions to
study the effect of spin-orbit scattering on conductance
fluctuations. Below 2 K, these samples show weak antilo-
calization at very low magnetic fields, indicating the pres-
ence of spin-orbit scattering. Millo et al. observe a de-
crease in the amplitude of the fluctuations at low tempera-
tures from that expected by extrapolating the data from
higher temperatures. They attribute this decrease in am-
plitude to the effect of spin-orbit scattering. They also ob-
serve an increase in the correlation field B, at low temper-
atures, over the value expected from extrapolating the
high-temperature data. In our description, this is due to
the fact that, as /, becomes comparable to /,, at low tem-
peratures, the correlation field increases, as shown in Fig.
3.

In conclusion, we find that the presence of spin-
dependent scattering affects both the amplitude and the
characteristic magnetic-field scale of the conductance
fluctuations. These effects can be quantitatively described
with simple modifications to the existing theory, facilitat-
ing comparison with experiment.
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FIG. 3. B./B. as a function of /,/I for the same case shown
in Fig. 2. B is defined as Bc, =0.42®0/(/,W), and the width of
the wire is 0.1 gm.
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