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We extend the theory of weak localization and conductance fluctuations in mesoscopic samples to
more complex measurement-probe configurations using the network formalism of Dougot and Rammal.
Large measurement probes reduce both the amplitude of the localization contribution and the charac-
teristic field scale of the low-field magnetoresistance. We present a simple and physically intuitive pic-
ture to explain these results. Our calculations on the length dependence of the conductance fluctuations
for wires with narrow measurement probes agree with previous theoretical work, but allow us to make
predictions for samples with more complex probe geometries. Furthermore, the detailed shape of the
field autocorrelation function is strongly dependent on the geometry of the probes, reminiscent of the
weak-localization magnetoresistance. The results of our experiments on weak localization and conduc-
tance fluctuations in short Ag wires confirm many of these predictions. We also discuss the relevance of
our calculations for the determination of important microscopic parameters such as the electron phase

coherence length.

I. INTRODUCTION

In the past few years, there has been a great deal of in-
terest in the effect of measurement probes on the electri-
cal transport properties of samples whose size is less than
or comparable to the electron phase coherence length /4,
samples in the “mesoscopic” size regime.’? This interest
was initiated by two specific results from experiments on
conductance fluctuations in mesoscopic samples that
were completely unexpected from experiments on macro-
scopic samples. First, the amplitude of conductance fluc-
tuations in mesoscopic samples was found®>* to be much
larger than the “universal” value of ~e?/h predicted by
Altshuler® and by Lee and Stone.® Second, the magneto-
conductance of such samples was found to be asymmetric
in the magnetic field.” These experimental results led to a
flurry of theoretical activity®™'* aimed at extending the
theory of conductance fluctuations to include the effect of
multiple measurement probes. These theories have
proved remarkably successful in explaining the qualita-
tive behavior seen in mesoscopic samples. From the
point of view of an experimentalist, however, there are
still two problems that make a detailed quantitative com-
parison of theory to experiment difficult. First, all of the
multiprobe theories of conductance fluctuations men-
tioned above deal only with samples having probes which
are quasi-one-dimensional (1D) with respect to /,. In
fact, in most of the theories, the probes are assumed to be
of the same width as the sample itself. Experimentally,
however, the design of measurement probes is more often
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dictated by lithographic considerations: the probes are
usually wider than the sample, and may even be two-
dimensional (2D) with respect to /,. As we shall show in
this paper, the presence of wide probes can have a large
effect on the measured properties of the sample. Second,
for a quantitative comparison to theory, one must be able
to reliably determine important scattering lengths such as
l,, the spin-orbit scattering length [ ,, and the magnetic
impurity scattering length /. In a normal metal, the sim-
plest (and quite frequently the only) means available to
infer these scattering lengths is to fit the low-field magne-
toresistance to the standard theory!>!® of weak localiza-
tion, which does not take into account the effect of mea-
surement probes. For macroscopic samples such as thin
films and long wires, this works remarkably well. For
mesoscopic samples, where the standard theory is no
longer adequate, a mesoscopic theory of weak localiza-
tion is required.

Both problems mentioned above were encountered in
some of the early studies on the Aharonov-Bohm effect in
single Al loops.!” These problems are illustrated in Fig.
1, which shows the magnetoresistance (MR) data for a 1-
pum Al loop at 2.0 K. Also shown is the best fit to the
weak-localization theory of Altshuler, Aronov, and
Spivak (AAS),'"® which does not take into account the
effect of measurement probes. It is clear that the theory
does not quantitatively describe the low-magnetic-field
data of this loop. The shape of the low-field magne-
toresistance curve cannot be fit with the AAS theory.
Furthermore, the amplitude of the magnetoresistance is
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smaller than expected, so that, if one insists on fitting the
data to the AAS theory, the values of l¢ inferred are
shorter than those obtained from previous studies on
longer 1D wires. At the time these experiments were
done, the effect of measurement probes on quantum in-
terference was not fully understood. Experiments on
loops of different sizes, however, did indicate that the
problem was more acute in the smaller loops, when the
loop perimeter was less than /.

These experimental results on single metal loops led us
to investigate the simpler case of weak localization in
single short metal wires. In order to systematically study
the effect of measurement probes, we measured'® short
Ag wires of different lengths and with different measure-
ment probe configurations. As in the case of the metal
loops, it was found that the presence of the measurement
probes affected both the shape and the magnitude of the
weak-localization magnetoresistance. To describe these
results quantitatively, we extended the theory of weak lo-
calization to include the specific geometry of the probes,
and found excellent agreement with experiment. In this
paper, we give a detailed derivation of these results,
showing how the measurement probes affect both the
magnitude and shape of the weak-localization MR. We
shall also apply the formalism we develop to calculate
conductance fluctuations in short wires with both 1D and
2D probes. As in the case of weak localization, we find
that the measurement probes affect the magnitude and
shape of the autocorrelation function of the conductance
fluctuation, the quantity analogous to the weak-
localization MR. Finally, we give more details of our ex-
periments on short Ag wires, presenting some data on
conductance fluctuations in short Ag wires with different
measurement probe configurations, and discuss some re-
cent experiments on conductance fluctuations performed
by other groups.
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FIG. 1. Low-field magnetoresistance of an approximately 1-
pum square Al loop at 2.0 K. Solid line, data; dashed line, best
fit to the isolated loop theory of Altshuler, Aronov, and Spivak
with the fitting parameters /,=1.2 um, [,,=0.45 um.
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II. THEORY OF QUANTUM CORRECTIONS
TO THE RESISTANCE

We begin by deriving an expression for the change in
the resistance of a short wire due to quantum corrections
to the conductivity. The treatment here follows closely
the ones given by Maekawa, Isawa, and Ebisawa!® and by
Kane, Lee, and DiVincenzo,'? which we have generalized
to take into account the effects of probes of different di-
mensions.

The geometry we assume for this calculation is shown
in Fig. 2: it consists of a short wire of length L and width
W with one current and one voltage probe attached at
each end, enabling measurements using the conventional
four-probe method. In what follows, we call the region
between the voltage contacts the “sample” (labeled s in
Fig. 2) and the region outside the voltage contacts the
“probes”. The probes can be either 1D or 2D with
respect to /,. (We shall discuss specific cases relevant to
our experiment later in this paper.) The probes are at-
tached to ideal conductors at the points a, b, ¢, and d. A
constant current I is applied between ¢ and d and the
voltage V is measured across a and b. Since the total
current I across any cross section of the sample is con-
stant, the differential change AI must be zero,

AT =A [dS,j P =A [ dS,d*r'o 4r,r E4r')=0 .
(1)

Here j,(r) is the current density, o ,4(r,r’) is the conduc-
tivity, and Eg(r’) is the electric field. Expanding the
differential, we obtain

A [ dS,d°r'[{o44r,r')) AELr)

+A0a3(r,r')(EB(r’))]=0 , )

FIG. 2. Schematic of a four-probe measurement of a wire of
length L and width W. Current is introduced through the
probes ¢ and d, and the voltage resulting is measured across
probes a and b.
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where we have replaced o,4(r,r') and Eg(r') by their
average values Following Maekawa, Isawa, and
Ebisawa'® we set {0 ,4(r,r')) =0¢8,48(r—1'), where 0 is
the classical Drude conductivity. This glves

00 [ dSLAE,(1)=— [ dS,d’r'Ac 4r,r'){Egr')) . (3)

Now the change in the voltage AV between the points a
and b is just given by the line integral of AE(r) between a
and b. Due to the conservative nature of the electric
field, this voltage does not depend on the components of
AE perpendicular to the path of integration. Thus it is
convenient to calculate the voltage in terms of an electric
field averaged over the cross section

_ 1
AE(n= - [dSAE™),

where 7 now refers to the coordinate along the path of in-
tegration and S (r) is the cross-sectional area perpendicu-
lar to r. Introducing the notation AV, ., as in Ref. 7 of
the voltage measured between the points @ and b when
the current is applied between the points ¢ and d, we have

———fa” dr S Jds f'air Ao gin)

X(Byr)), (4)

AVbcd

where, from the notation, it is clear that the integral over
ris a line integral.

Kane, Lee, and DiVincenzo!? have pointed out that
setting (0 ,4(r,1')) =08,48(r—r') ignores the long-
range contribution to the average conductivity. Howev-
er, they note that by introducing the classical electric
field E°(r) in place of the true electric field E(r) and by
applying the appropriate boundary conditions to the
long-range part of (o 4(r,r')), one obtains Eq. (4) with
(E(r')) replaced by E°Ur'). The classical field E°(r) is
nonzero only in the path between the current probes ¢
and d, where it is equal to j°(r)/o, Thus the integral
over r’ in Eq. (4) has a contribution only when r’ is in the
classical current path, i.e., when r’ is on the direct path
between the points ¢ and d. Equation (4) allows us to
determine the change in voltage AV, ., given the change
in the conductivity o.

A. Weak localization

The weak-localization contribution to the conductivity
is given by!> 16

2

Ac'(r,r')=— 2e’D C(r,r")6(r—r1'), (5)
o

where C(r,r'), the particle-particle propagator, is the

solution of the diffusion equation

2e A
#i

&(r—r’)

—iV— #D

C(r,r')= (6)

12

Here D = 1vpl is the electron diffusion constant, vy being
the Fermi velocity and [ the elastic mean free path, and
A is the magnetic vector potential. The boundary condi-
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tion on an insulating boundary is given by

2e A,
—iv,——

C(r,r')=0, (7)

where V, and A, are the components of the appropriate
vectors normal to the surface. Physically, this is just the
condition that at an insulating boundary, there can be no
current normal to the surface. In order to simplify
matters, we impose the additional boundary condition
that C(r,r')=0 at the ends of the wire which are con-
nected to the current an voltage contacts (at a, b, ¢, and d
in Fig. 2), although this assumption is not necessary.
Putting Eq. (5) into Eq. (4) we obtain

AV100= 2e 2D f

el My )de C(r,n)E%r) , (8)
0

where the notation makes it clear that the integral over
the variable r is performed only over the length L com-
mon to both the current and voltage paths. It is impor-
tant to note that, because of this, the weak-localization
contribution is independent of precisely which leads are
being used for current and voltage, provided that the
length L of the lithographically defined sample remains
the same. Thus, if instead of the present configuration we
were to use lead c as a voltage lead and lead b as a current
lead, we expect the measured weak-localization contribu-
tion to remain unchanged.

For the configuration shown in Fig. 2, the region L has
a constant area of cross section A4, and we can then set
ENr)=I/0,A. Writing Eq. (8) in terms of the resis-
tance R =L /oyA4, with AR =AV /I, we obtain the well-
known equation for the weak-localization contribution of
a narrow wire?’

_ 2D
7T0'0L

AR

= f dr C(r,r) . )

1. General formula for a wire

With Eq. (9), we have, at least conceptually, a simple
recipe to determine the weak-localization correction for
any 1D sample: solve Eq. (6) with boundary conditions
appropriate to the sample geometry and put the result
into Eq. (9). In practice, the solution of Eq. (6) for arbi-
trary sample geometry is not trivial, and an analytical
solution can be found for only the simplest cases. In
what follows, we shall generalize the network formalism
of Doucot and Rammal,?! who derived the localization
correction for a network of 1D wires, to find the solution
to these equations.

Consider then the 1D wire of length L and width W
with four measurement probes shown in Fig. 3(a). To be
definite, we have chosen a configuration with one 2D
probe and one 1D probe on either end of the wire; how-
ever, the discussion that follows could be applied to wires
with any combination of 1D and 2D probes. We shall in-
itially work in zero magnetic field, generalizing the result
later to finite field.

For the 1D wire, C(r,r’) in the wire depends only on
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the coordinates x and x' along the wire, so we shall drop
the remaining coordinates in the following discussion and
denote it by C(x,x’). Let C, be the value of C(x,x’) at
one end of the short wire (x =0), C, the value at the oth-
er end (x =L), and C, the value at the point x’, which is
somewhere in the middle of the wire. Between x =0 and
x', C(x,x') obeys the homogeneous 1D equation
2
_dr 1

C(x,x")=0. (10)
dx? l},

The solution of this equation is?!

C(x,x")=C,cosh(x /1)
sinh(x /1)

sinh(x' /1) (1)

+[Co—C,cosh(x'/14)]
A similar solution can be found for the strand between
x =x' and L, and for the two 1D probes on either end of
the wire. Equation (11) gives C(x,x’) in terms of C, and
C,, which are still unknown and must be determined by
the boundary conditions at x =0 and L. The appropriate
boundary condition can be determined by integrating the
diffusion equation over a very small volume v around the
point »

J

v

1 K Jp— 1 3 ’
—V- — =— —r') . 1
VV+1$ Clrnd’r=—5 [drsr—r). (12)

FIG. 3. (a) Geometry assumed for the calculation of the
weak-localization contribution of a wire of length L and width
W. Current is introduced through the two two-dimensional
probes which each subtend an angle 8, and voltage is measured
across the two one-dimensional probes of width W,. (b) Ex-
ploded view of one end of the wire, showing the juncture of the
wire, the one-dimensional probe, and the two-dimensional
probe.
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The first term under the integral sign can be converted by
the divergence theorem into a surface integral. The
second term can be neglected if the volume of integration
v is small in comparison to / it (¢ is the thickness of the
film). The volume of integration can be always be chosen
to satisfy this condition. For example, for the short wire
of Fig. 3(b), with one 2D probe and one 1D probe (of
width Wp) on each end, the maximum volume of the in-
tegration region is W, wt. Thus, when W and W, << 1 &
the second term can be neglected. The term on the
right-hand side is zero if the region of integration does
not contain »’, and unity if it does. Equation (12) then
becomes

— g2 __L
fSVC(r,r dlr=—08, (13)
where the surface s encloses the volume v. Since the
boundary condition Eq. (7) still holds for the component
of the gradient perpendicular to the surface of the metal,
the only contribution to the integral in Eq. (13) is from
the component within the plane for the 2D film, and
along the 1D strands for the wires.

We now apply Eq. (13) at the point x =0, the juncture
of the wire, the 1D probe, and the 2D film. The surface
of integration is shown in Fig. 3(b). The only contribu-
tion to the integral comes from the three regions of the
surface which are shaded. The first is in the 2D film, and
is part of the surface of a right circular cylinder of radius
r and height ¢. Over this surface, the gradient of C(r,r’)
is constant and has the value (see Appendix)
—(C,/r)/[In(21y,, /1)], where I 5,1 is the phase breaking
length in the 2D film, which can be different from /, in
the 1D wire.?? Integrating over this region of the surface
then gives —0tC,/[In(2l,,/1)], where 6 is the angle
subtended by the 2D probe. The value of C(r,r’) over
the two other regions in the 1D strands can be calculated
from Eq. (11). As before, VC(r,r’) is constant over each
of the two regions, and the surface integral just gives the
surface areas of each region, which are Wt and W,t for
the wire and the probe, respectively. Noting that the
right-hand side of Eq. (13) is zero for the particular
volume of integration (since it does not contain r'), we
obtain, after a bit of algebra,

—C,mta —C,coth(x’) | =0, (14a)

0
sinh(x")
where n=n,+n, 1,=60/[In(2l,n/D], 1=W,/l
a=W/l;, and, to save space, the arguments of the hy-
perbolic functions are written with respect to /. This
equation is the equivalent of the network equations of
Doucot and Rammal, generalized to take into account
2D components and 1D strands of different widths. Fol-
lowing Dougot and Rammal, we call the small volume of
integration a ‘““node.” Two other equations are obtained
from the nodes at x =x' and L,

C

Co[coth(x’)+ —x')]—————

olcoth(x’)+coth(L —x')] Sinh(x’)

(o o,
sinh(L —x')  #DtW

(14b)
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and

Co

sinh(L —x') (140)

—Cynta —C,coth(L —x') |=0.
Equations (14) are three equations which can be solved
for the three unknowns C,, Cy, and C,. Knowing these,
we can determine C(x,x’) anywhere in the wire, using
Eq. (11). In general, one can write such network equa-
tions for geometries with any number of nodes. For N
nodes (including the source node at x’), we need to solve
N linear equations in N unknowns. In complicated
geometries, this may not be possible to do in closed form.

Putting C(x,x’) into Eq. (9), we obtain our final result
for the fractional change in resistance due to weak locali-
zation'®

AR _ R L,_s_
R (wtise®) W
(n*+a?)cothL —(1,/L)(n*—a?)+2an
n*+a?+2an cothL

(15)

where Rop=(1/0t) is the sheet resistance of the wire
and 7#i/e?=~12.9 kQ. Equation (15) gives the weak-
localization contribution for a 1D wire with any probe
configuration. Different probe configurations only
change the value of 1; Eq. (15) remains valid.

Before discussing specific geometries, it is useful to
consider some general limits of Eq. (15). For the case of a
very long wire (L >>1,), Eq. (15) reduces to the familiar
result!®

AR__Ro Iy _ Ro 1
R (wti/e®) W (wh/e?) a’

independent of 7 as we should expect, since the probes
should not make any difference. For the short wire
(L <<ly), Eq. (15) gives

AR_ Ko 1 (17)

R (mti/e?) m

It should be noted that this has the same form as Eq. (16),
with a replaced by 7. This result is independent of the
geometry of the wire, depending only on the geometry of
the probes through 7. Thus, in this limit, the weak-
localization contribution of the short wire is completely
determined by its probes.

(16)

2. Dependence on magnetic field

Up to this point, we have not discussed the effect of a
finite magnetic field B. The magnetic field is usually in-
cluded in the weak-localization problem through the vec-
tor potential in Eq. (6). For the case of 1D wires, it is
well known that the effect of a magnetic field can be in-
cluded by introducing a field-dependent phase coherence
length /,(B) defined by>*

1 1 1 | mWB

B 15 3| @

2
, (18)

2
Iy

s
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where ®;=h /2e is the superconducting flux quantum.
For 1D probes of width W, the same equation holds,
with W replaced by W,. For 2D probes, it is shown in
the Appendix that the effect of a magnetic field is to re-
place the parameter 7, with the field-dependent quantity

n,(B)=—20/[In(B /4By)+y(L+B,/B)] (19)

where 1 is the digamma function, B,=%/4el? and B,
=ti/4el ?,,ZD.

In a finite magnetic field, Eq. (15) still remains valid:
one just has to replace the parameters /,, a, 1,, and 7, by
their corresponding field-dependent quantities [4(B),
a(B)=W/l¢(B), nl(B)=Wp/l¢p(B), and 7,(B) as
defined in Eq. (19) above.

3. Specific probe configurations

The only way the probes enter Eq. (15) is through the
parameter 7; different probe configurations correspond to
different values of . Thus, to determine the formula ap-
propriate for a particular probe configuration, one needs
to calculate the parameter 7 appropriate for that
configuration. We shall calculate 1 for three specific
probe configurations relevant to our experiment; the pro-
cedure, however, can be applied to any general probe
configuration consisting of 1D and 2D elements. The
configurations we shall discuss are shown schematically
in Fig. 4. The first [Fig. 4(a)], which we denote the

(a)

(b)

wires

FIG. 4. One-dimensional with different probe
configurations. (a) Narrow-probes configuration, a wire with
four one-dimensional probes of width W, <<l,. (b) Wide-
probes configuration, a wire with two one-dimensional probes
and two two-dimensional probes. (c) Wire with only two two-
dimensional probes.
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“narrow-probes” configuration, is a short wire with four
1D probes of width W, <l,, the standard four-terminal
geometry. The second “wide-probes” configuration [Fig.
4(b)] has two 2D probes and two 1D probes. The last
configuration [Fig. 4(c)] is a short wire with just two large
2D probes. We shall emphasize the short-wire limit
(L <<1y) of Eq. (15) [given by Eq. (17)], since it is in this
limit that the probes become important.

Narrow-probes configuration. First consider the case
when all four probes have the same width as the wire it-
self, i.e., when W,=W. In this case, 77=2W/l¢=2a.
Putting this into Eq. (17), the equation appropriate for
the short-wire limit, one finds that the amplitude of the
weak-localization contribution in the short wire is exactly
half that of the long wire [Eq. (17)]. This factor-of-2
reduction is due, of course, to the fact that there are two
probes of width W on either side of the wire. If instead of
two, there were N probes, then n=Na, and we would ex-
pect a factor-of-N reduction in the weak-localization con-
tribution.

One can also reduce the amplitude of the localization
contribution by increasing the width W, of the probes.
For example, four probes of width W, =2W would result
in the same reduction as eight probes of width W. It
would therefore seem difficult to distinguish experimen-
tally these two cases. Applying a magnetic field, howev-
er, lets us distinguish between these two configurations.
This can be seen by considering the characteristic field
B, for the two configurations in the short-wire limit
[Eq. (17)]. B, is defined as the half-width of the mag-
netoresistance curve; mathematically (AR /R)(B,)
=1(AR/R)(0). For the former configuration (four
probes of width 2W each), B =[3®,/m2WI,(0)],
whereas for the latter it is exactly twice that. Thus, by
simply looking at the total magnitude and the half-width
of the weak localization MR in the short-wire limit, one
can estimate both the number and the width of the 1D
probes.

1D wire with two 2D probes. In this case 17;=0 and
1=m,. In general, the presence of 2D probes results in a
larger reduction in the magnitude of the weak-
localization contribution in comparison to 1D probes.
This can be seen by estimating the value of 7, for realistic
material parameters. Let 6=, [,,p =1 um, and / =0.01
pm, giving 17,=0.59. In comparison, 7 for the narrow
probes configuration, with W, =0.1 ym and /,=1.0 um,
is 0.2, so that the magnitude of the weak-localization con-
tribution for a wire with two 2D probes is less than half
that for the corresponding narrow-probes configuration
in the short-wire limit.

Even more striking, however, is the magnetoresistance
of this configuration in the short-wire limit. Putting 7,
defined by Eq. (19) (with 6=1) into Eq. (17), we obtain

AR __Ro 1
R (m#i/e?) m
RD

B
— ¢
(224 /e?)

‘B

B

+
4B,

+1n

Y

1
2
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This is identical in form to the theoretical weak-
localization MR for a macroscopic 2D film.'>!¢ To visu-
ally demonstrate the difference this causes in the MR, we
show in Fig. 5 the experimental MR of two macroscopic
Ag samples. The first [Fig. 5(a)] is a long (=~50 um) 1D
wire, and the second [Fig. 5(b)] is a large 2D film. It can
be seen in Fig. 5(b) that the MR changes very rapidly at
very small magnetic fields: this is the characteristic sig-
nature of a 2D film, and we should expect to see this sig-
nature in short wires with 2D probes.

Wide-probes  configuration. This is just the
configuration which was used to derive Eq. (15), with
n=mn,+17,, 7; and 7, being defined as before, in the para-
graph preceding Eq. (14b). The combination of 1D and
2D probes makes the situation a bit complicated. Due to
the presence of the 2D probes, the amplitude of the
weak-localization contribution is less than that for the
narrow-probes configuration. The magnetic-field depen-
dence is also more complicated then either of the two
configurations discussed above, being a combination of
1D and 2D MR. One should still expect to see the
magnetic-field dependence of the 2D pads in the short-
wire limit, although it will be less pronounced than for a
wire with only 2D pads.

Other geometries. Quite frequently, experimental four-
probe configurations are more complicated than the ex-

25 T T T

(a) Long wire
a<
~N
o
IO 2D film
00.15— -
—
0.1 —
0.05 —
O ]
-0.05 :
—60 -30 (6} 30 60

B (mT)

FIG. 5. Weak-localization magnetoresistance of a long one-
dimensional Ag wire and two-dimensional Ag film at 2.0 K.
Circles, data; solid lines, fits to weak localization theory. (a)
~50-um-long wire, width 35 nm, fitting parameters /,=1.9 um,
l4,=0.39 um. B,=~38 mT. (b) Two-dimensional film, length 5
mm, width 50 pm, fitting parameters /,=3.61 pum, /,,=0.58
um. The sharp rise close to zero magnetic field corresponds to
B,~0.5mT.
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amples we have discussed. For example, a favorite
configuration is one in which the widths of the probes rae
increased in steps as one goes away from the 1D wire. To
calculate the weak-localization contribution for such a
sample would involve solving more than three-node equa-
tions. However, all such situations can be reduced to the
three-node case, with a more complicated expression for
the parameter 7.

Single Loops. In the Introduction, we mentioned the
problems associated with obtaining a full quantitative un-
derstanding of the h /2e Aharonov-Bohm effect in some
of the single metal loops studied at Yale University.
These problems were associated with the effects of the
measurement probes attached to the loops. - Unfortunate-
ly, because of the complicated probe arrangement in
these samples, which was dictated by considerations of
lithography, these samples are difficult to model theoreti-
cally. Recently, Verbruggen et al.?* have measured sin-
gle micron-size Au loops with the sample geometry
shown in the inset to Fig. 6. Using the formalism that we
have developed, we can derive the weak-localization con-
tribution for this geometry:

AR _ Ro 1
R wti/er W

1487+ 25 coth2b — (1, /b)(8*tanhb +3)
8%tanhb +28+coth2b —(cosy /sinh2b)
(21)

x1073

/
_30k 1 l l \

FIG. 6. Theoretical predictions for magnetoresistance of a
single loop with probes in the configuration of Ref. 25 (see in-
set). Diameter of the loop d =1 pm, linewidth W =50 nm, and
width of the probes W, =50 nm. Dashed line is the AAS theory
for an isolated loop and the solid line is the result of our calcula-
tions for /,=2 um.
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where y =27® /P, where P is the flux through the loop,
8=n/a, ;;=W,/l,,, a=W/l,;, the circamference of
the loop is 2b, the width of wire defining the loop is W,
and the width of the probes is W,. As before, the argu-
ments of the hyperbolic function are all normalized to /.

Note that, as the circumference of the loop becomes
large in comparison to /;, we regain the result for a long
wire, Eq. (16). As the width of the probes is reduced
(8—0), we obtain the result of Altshuler, Aharonov, and
Spivak for an isolated single loop. It is clear from Fig. 6
that the presence of probes suppresses the amplitude of
the h/2e Aharonov-Bohm oscillations substantially, in
agreement with previous calculations.?> We refer to Ref.
24 for a direct comparison between the theory and exper-
iment. The results confirm the need to take the measure-
ment probes into account to describe the experimental
data.

4. Physical interpretation

From the examples above, it is clear that the probes
affect both the magnitude and the shape of the weak-
localization MR. This effect of the measurement probes
on the MR can be explained very simply using the well-
known physical picture of weak localization introduced
by Khmelnitskii’® and Bergmann.!* For a mesoscopic
wire, the weak-localization correction includes contribu-
tions from time-reversed paths which originate in the
wire, but then diffuse into the probes. In the short-wire
limit (L <<I,), the interfering electrons spend most of
their time in probes. The wider the 1D probe, the smaller
the probability that the electrons will return to the origin
in the wire phase coherently; the probability is smallest
for a wire with 2D probes. Thus the magnitude of the
weak-localization contribution is smaller for wires with
wider probes. The effect of the probes on the shape of the
MR can be understood in a similar way. For a wire with
1D probes, the area of the interfering paths is restricted
by the width of the probes. The larger the width, the
smaller the magnetic field required to suppress the weak-
localization contribution, and consequently, the smaller
the characteristic field B, of the MR. For a wire with 2D
probes, however, the area of these paths is restricted only
by /4. As in the case of a 2D film, where B,~®, /I3, a
small magnetic field will rapidly suppress the contribu-
tion of these paths, and we should expect the MR of such
a wire to resemble the MR of a 2D film (Fig. 5).

Two-dimensional probes have the most visible effect on
the MR of a short wire: because of the large value of 7,
the magnitude of the MR is greatly reduced, and the
characteristic magnetic-field dependence of the 2D
probes contrasts with the MR signature of the 1D wire.
One-dimensional probes also affect the magnitude and the
shape of the MR, but the effects are less dramatic. The
effect of 1D probes on the shape of the MR is greatest
when they are of a different width than the 1D wire.
However, ignoring the effects of 1D probes, even narrow
ones, can lead to errors in the quantitative analysis of the
MR data of short wires.
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B. Conductance fluctuations

1. General formulation

Much of the formalism that we have developed for cal-
culating the weak-localization contribution of small mul-
tiprobe 1D wires can also be used to calculate the ampli-
tude of the conductance fluctuations in these geometries.
Although the detailed physical interpretation of the con-
ductance fluctuations in terms of interfering electrons is
less direct, mathematically the technique is relatively
straightforward. We restrict ourselves to the low-
temperature limit, where I, =1/#D /kz T >>1 4 Realist-
ically, very few metallic samples fall in this regime, unless
I, saturates at low temperatures (e.g., due to the presence
of paramagnetic impurities at low magnetic fields). Even
in the case of samples prepared from silicon or gallium
arsenide, /7 is rarely more than a few times /,. Nonethe-
less, we expect the qualitative effects that the probes have
on conductance fluctuations in the low-temperature re-
gime to be the same as in the high-temperature regime.

Conforming to the literature on fluctuations in mul-
tiprobe samples, we shall discuss fluctuations in the volt-
age V,, ., rather than fluctuations in the conductance.
Our starting point is Eq. (4), generalized to a nonzero
magnetic field B,

1 b dr

= d 3.0 ’
Vab,ca(B) S0 de fcd r'Ao(r,r',B)
X (jUr))
(22‘)
2
S, — e“D
F>(AB)=2 ] S(
2D b dr[ b d 3
FAAB)=2 ds ( d?
7ol f f (ry f ’2f

where the particle-hole propagator d(r;,r,,AB) is the
solution of the diffusion equation

eA A 1 8(r—r’)
+._ _,
#

1 2 #D
This equation is identical to Eq. (6) for C(r,r’), with A
replaced by A A /2. F(AB) given above does not include
the particle-particle channel contribution, which is equal
to the particle-hole contribution at zero field, but is rap-
idly suppressed at magnetic fields larger than ~B,. Thus
our results will only be valid at high magnetic fields.

In our discussion above, we have assumed that l¢ in

—iv—- d(r,r')= 27)
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where (jr"))=(E%r')) /o, is the classical current
density. We wish to calculate the correlation function of
AV, ca> defined by

F(AB)=(AV,, 4(B)AV, 4(B+AB)) , (23)

where the angular brackets denote an average over the
magnetic field B. According to the ergodic hypothesis of
Altshuler® and Lee and Stone,’ this is equivalent to an
average over all possible impurity configurations. Fol-
lowing the notation of Benoit et al.,’ we decompose
F(AB) into components that are symmetric and antisym-
metric with respect to the magnetic field

FS(AB)=(AV}, .,(B)AVS, .o(B +AB)) (24a)
and

FAAB)=(AVj .4(B)AV .4(B +AB)) , (24b)
where

AVSA(B)=[AV,y ((B)EAV, 0(—B)]/2 . (25)

With Ao (r,r,)Ac(rs,r,)=1|d (r,r,)1?8(r;—13)8(r,—1,)

and using the Onsager relation Ao(r,r’,B)
=Ao(r',r,—B), one obtains!®
r4|d rl,erAB)i
X[8(r;—r;3)8(ry,—ry)+8(r; —1,)8(r,—r3)]

X jUr,)jNr,) , (26a)

de(r3)fdd3r4|d(r1,r2,AB)|2
(4

X[S(rl—r3)8(r2—1‘4)
X jUr,)jUry,) ,

—8(r;—r,)8(r,—r;)]
(26b)

[

Eq. (27) is the same as the phase coherence length applic-
able to the weak-localization case, Eq. (6). There are
reasons to expect that this may not be the case. In the
Feynman diagrams2 for conductance fluctuations, one
does not allow inelastic processes to connect the two con-
ductivity loops. This means that the amplitude of the
conductance fluctuations is determined by the quasiparti-
cle scattering time due to electron-electron interactions,
while weak localization is determined by the lifetime of
the Cooper channel.?? For the moment, we shall ignore
this difference, with the understanding that 14, refers to
the appropriate phase coherence length.
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We shall now apply these formulas to the calculation
of the correlation function for a wire with the geometry
shown in Fig. 2. As before, we assume that the current is
introduced through two probes ¢ and d and that the volt-
age is measured across the two other probes a and . The
region common to both the path between the current
probes and the path between the voltage probes we shall
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denote by s.

Due to the 8 functions in Eq. (26), the regions of in-
tegration over the coordinates r,, r,, 73, and r, are re-
stricted. We can define a function FS4(AB)=FS(AB)
—F4(AB), the contributions to which come only from
the part of the sample common to both the current and
the voltage paths. From Eq. (26), this is given by

J

d

e’D 7 o
fr1€s S(rl) fds(rl)fr2€sd3r2ld(rl’rz’AB)lz[‘] l(rz)]z ’

7ol

F54AB)=2

(28a)

where the notations r; €s and r, Es imply that the region of integration is in the region of the sample common to both
the voltage and the current paths. The contributions to F 4(AB) come from the remaining regions of integration

e’D f dr,
77-0-(2) r €a,b,s S(rl)

FAAB)=2 de(rl)frZEcdsd3r2ld(rl,rz,AB)Iz[jCI(rz)]2, (28b)

where it is understood that r; and r, are not both simultaneously in the region s. To evaluate these integrals, we first
need to solve the diffusion equation [Eq. (27)] to determine d (r,r’). This we solve using the same technique we em-
ployed for the weak-localization problem; the difference is that » and r’ are no longer restricted to be in the sample re-
gion s, but can now also be in the probe regions a, b, c, and d.

FA(AB), involving as it does integrals over the probes, is intimately dependent on the nature of the probes, and to
calculate it we need to consider specific probe configurations. F S4(AB), on the other hand, like the weak-localization
contribution, only involves integrals over the region s. We can carry out the integral in Eq. (28a) for any probe
configuration to obtain

FSA= _3_21_- 2_L_lis (772+az)cothL—(l¢/L)(772—a2)—|—2a1]
hok? | w4 P+ + 2am cothL
—2an e | 2an+ (P +a?cothL (=L /1,)+2an(n*—a?) .
L | [(n*+a®)+2an cothL [(n*+a?)sinhL +2an coshL]?

Again, this equation is valid for any probe configuration; different probe configurations correspond to different values of
1. To determine F* and F5, we need to take a look at specific probe configurations. As examples, we shall examine
two: the narrow-probes configuration [Fig. 4(a)] and the wide-probes configuration {Fig. 4(b)].

2. Narrow-probes configuration

Let us now consider the case of a wire where all the probes are of equal width W, <<I,. The contributions to
F4(AB) can be split into components which we label ac, ad, as, bc, bd, bs, sc, and sd, referring to Fig. 4(a). The first
letter corresponds to the region of integration over r; and the second letter refers to the region of integration over r,.
By symmetry it can be seen that ac =bd, ad =bc, bs =as, sd =sc, and sc =as. Thus we need to evaluate only the three
contributions: ac, as, and ad. The total contribution is equal to 2ac +2ad +4as. Recalling that {j(r,)) =1/t W, for
the 1D probes, we obtain (after tedious algebra)

2
el
hodt?

(n*+a?)cosh2L —(n*—3a*)+2ansinh2L
7*[(p*+a?)sinhL +2an coshL]?

FAAB)=2

+2

[(P+a?)sinh2L — (2L /1,)(n?—a®)+2an(cosh2L —1)] ] 0

an[(n?+a?)sinhL +2an coshL ?

[

Here a=W/l,, n=2W,/l,,, and the arguments of the and
hyperbolic functions are normalized by /,.
Length dependence. Equations (29) and (30) appear
quite complicated, but have some very simple limits. For
long wires (L >>1,), they reduce to

el

1 2
2.2 +—
hopt

n a

1

FA0)~2 e
nin+a)

(31b)

Note that the second term in Eq. (31a) for FS(AB), which
is the dominant term for L >>I,, is independent of any
parameter related to the measurement probes, as expect-

e2r ’L 1
ha%ﬂ '—3 (313.)

SzFA =
F (0)+2 W
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ed. In terms of fluctuations in the conductance G, this
term gives (AG)~(l, /L)}?, the value predicted by the
two-probe theories of Altshuler’ and Lee and Stone.°
The antisymmetric contribution F 4 however, is still
dependent on the probes, through 7.

For short wires (L <<I,), Egs. (29) and (30) give
1

7t

e?l
hodt?

FS,F42 (32)

As we saw in the case of localization, the voltage fluctua-
tions in this limit depend only on parameters related to
the probes. Large values of n due to large probes result
in smaller fluctuations. The amplitude of the voltage
fluctuations has a stronger dependence on the size of the
probes than the weak-localization MR, decreasing as 2
rather than 5~ ! [see Eq. (17)].

Figure 7 shows a plot of the symmetric and antisym-
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FIG. 7. Theoretical predictions for the zero-magnetic-field
symmetric and antisymmetric voltage fluctuations of short wires
of length L and width W, with different probe configurations, as
a function of L normalized to /4. /,=2.0 um and W =0.1 um.
Solid line, short wire with four one-dimensional probes of width
W, =W, dashed line, short wire with four one-dimensional
probes of width W, =2W. Inset: field correlation function of
the symmetric component of the voltage fluctuations for a short
wire with four one-dimensional probes, with L =1.0 um,
14=2.0 pm, and W =0.1 pm. Solid line, W, = W; dashed line,
W,=2W. The arrows mark the value of the correlation field B,
for each of the two curves.
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metric voltage fluctuations obtained from Eqgs. (29) and
(30) as a function of the length L of the sample, for the
case W,=W. Conforming to the literature, we plot
(AV/AV4)=V'F /A V4, where the normalization factor
AV,, introduced by Benoit et al.,’ is defined as
AVy=I(e*/#)} /o5t>W?. The antisymmetric voltage
fluctuations are seen to be essentially independent of the
length of the sample. The symmetric fluctuations scale as
(L /ldj)l/2 for L >>1,, corresponding to a scaling law for
conductance fluctuations of (AG)~(l, /L)%, as expect-
ed from the two-probe theories. In the opposite limit
(L <<1y4), the symmetric voltage fluctuations have the
same asymptotic value as the antisymmetric voltage fluc-
tuations. Similar theoretical results have been obtained
previously by various authors!®!>'* and agree qualita-
tive1y4with the experiments of Benoit et al.> and Skocpol
et al.

For comparison, we also show in the same figure the
voltage fluctuations for a wire with probes of width
W,=2W. The functional dependence on the length is
quite similar, but the amplitude of the fluctuations is re-
duced, as expected from the analysis presented above.

Nonlocal case. Unlike weak localization, one can ob-
tain a contribution to the voltage fluctuations even from
the parts of the sample through which there flows no
classical current. For example, suppose we introduce the
current through ¢ and a and measure voltage between b
and d [Fig. 4(a)]. Since there is no region common to both
the current and voltage paths, F54 is zero and hence
FS=F*. The only contributions to the voltage fluctua-
tions come from the terms ba, bc, da, and dc, all of which
are equal for probes with equal width W,. Thus

el

FA=F5=32
hodt?

a2

7*[(9?+a?)sinhL +2an coshL ]?

(33)

For long wires, F4(AB) and FS(AB) decrease exponen-
tially with L /1.

Magnetic-field dependence. In our discussion of weak
localization, we saw that the measurement probes
affected both the magnitude and shape of the weak-
localization magnetoresistance. For the fluctuations the
quantity analogous to the weak-localization MR is the
autocorrelation function F (AB), defined by Eq. (23). For
the narrow-probes configuration, which has only 1D ele-
ments, the field dependence27 of F(AB) comes through
the field dependence of /,

2

1 AT S ) (34)

_ 1 TWAB
I;(aB) 15 3

@,

where ®,=~h /e is now the normal electron flux quantum.
(A similar equation holds for /,,, with W replaced by
W,.) This is the same equation as Eq. (18) for weak local-
ization, except that B is replaced by AB /2. Just as for
weak localization, the characteristic field scale B,, which

is defined as the half-width of the autocorrelation func-
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tion F(B,)=4F(0), is determined by W and W,. In the
long-wire limit, B, is determined by the parameters W
and / P of the 1D wire itself, while in the short-wire limit,
only the parameters W, and /,, of the probes are impor-
tant. In the intermediate regime, B, depends on both W
and W, in a nontrivial way. This means that when
W+ W, one should expect to see a change in B, as one
goes from a long wire to a short wire. In addition, in the
short-wire limit, wires with probes of different widths will
have different characteristic fields even though the width
of the wire is the same. This is demonstrated in the inset
to Fig. 7, which shows a plot of FS(AB) for the two cases
W, =W and 2W, with L =11,.

More surprising, however, is the fact that B, is a func-
tion of the length of the sample even for wires with
probes of the same width as the wire. Figure 8 shows a
plot of B, as a function of [L/1,(0)] for a wire in the
narrow-probes configuration, with W,=W. On the posi-
tive abscissa, we have plotted the results for the local
case, i.e., the case when the current is introduced through
the probes ¢ and d, and the voltage measured across
probes a and b. On the negative abscissa, we have plotted
results for the nonlocal case. In the local case, for large
[L/140)], B, approaches the value 0.42 [¢/],(0)W]
predicted by the two-probe theory.”” As [L /1,(0)]—0,
however, B, decreases, and continues to decrease as we
cross over into the nonlocal regime.

This implies that one cannot accurately determine
1,(0) in the mesoscopic size regime from B, by using a
simple relation of the form B, =constant X [®,/1,(0)W].
The application of such a relation in the region L ~ 31,
for example, would give an erroneously large value of
14(0). To determine /,(0) one must fit F(AB) as a func-
tion of AB, with /; as a fitting parameter, much as one
fits the low-field magnetoresistance in the case of weak lo-
calization.

It is worth noting that, at low magnetic fields, B, de-
pends on the absolute magnetic field B. This is due to the
magnetic-field dependence of the contribution® from the
particle-particle (Cooper) channel to F(AB). B, for the
particle-hole contribution (diffusion channel) does not de-
pend on B. For B =0, the contributions from both chan-
nels are equal and consequently, B, is just that of the
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FIG. 8. B, of the symmetric and antisymmetric

conductance-conductance correlation functions for a short wire
of width W =0.1 um with four one-dimensional probes of width
W,=W and l,=1.0 um, as a function of the length of the sam-
ple. Positive abscissa, local case; negative abscissa, nonlocal
case. Current and voltage contacts for each case are shown in
the insets. Dashed line shows the value of B, predicted by the
two-probe theory.

(B >®,/Wl,), the Cooper channel is suppressed, so that
B, is again that of the diffusion channel. For intermedi-
ate values of B, both channels contribute. B, for the
Cooper channel will increase due to the relevant field
dependence of [, given by Eq. (18) since
B, x1/14,(B+AB/2). Thus for these intermediate
values of B there will be an increase in B, over the zero
field (B =0) value; but this increase will be small due to
the overall suppression of the Cooper channel contribu-
tion.

3. Wide-probes configuration

Finally we discuss the case of a wire with two narrow

diffusion  channel. At large magnetic fields  voltage probes and two 2D probes. F“4(AB) is given by
|
1P| p 28, |1*| 1, 2B B
A — e [ ¢
= = — —+ +In |-
FUARI= |5 0 2 AB 2" aB | " |3B,
(7*+a?)cosh2L — (9> —3a?*)+2an sinh2L
[ (n*+a?)sinh2L +2amn cosh2L ]?
N (n*+a?)sinh2L — (2L /1,)(* —a®)+2an(cosh2L —1)
a[(n*+a?)sinhL +2an coshL ]
tn (n*+a?)sinh2L — (2L /1,)(n*—a?)+2an(cosh2L —1) ] ' 35)
an[(n*+a?)sinhL +2an coshL]?
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Here 0 is the angle subtended by each of the 2D probes at
either end of the wire. J is the integral

= wir_ex _ lA_BLi
| P P,
1 23¢ 7AB
2| 2 9?4, 2 , 3
Xy > T2l T, r (36)

where ¥ is the confluent hypergeometric function of the
second kind. Unfortunately, it is not possible to evaluate
J in closed form for all values of AB. We can approxi-
mate it for small values of B by replacing the upper limit
by 2/,. We then have

2
1, 2B, AB
VI3 s | T ss,
g= ; In(21,/) . (37)
2 AB

Equations (35) and (36) are far too complicated for us to
evaluate anything but the simplest limits without resort-
ing to a computer. In zero field, the amplitude of both
the symmetric and the antisymmetric voltage fluctuations
are smaller than those obtained for the wire with four
narrow probes, as shown in Fig. 7. With regard to the
field dependence, we have found that, due to the com-
plexity of the integral J, the field dependence of F(AB)
in this configuration is difficult to calculate, even numeri-
cally. However, due to the presence of the logarithmic
terms in Egs. (35) and (36), we expect to see a cusp in the
correlation function at zero field, similar to the cusp seen
in the weak-localization MR of wires in the wide-probes
configuration.

III. COMPARISON WITH EXPERIMENT

The existence of quantum-interference effects in meso-
scopic samples has been demonstrated in many experi-
mental systems, and it is not our intention to present an
elaborate review here. Instead, we will concentrate on
those studies where our insight into the effects of mea-
surement probes could prove useful.

Although weak localization has been the most exten-
sively studied quantum-interference effect, the impor-
tance of measurement probes came to be recognized only
after the experiments of Benoit et al.® and Skocpol et al.*
on conductance fluctuations in small metal and semicon-
ductor wires. Consequently, we shall begin with a discus-
sion of these experiments on fluctuations in small metallic
systems. We shall then discuss some early work on weak
localization in short metal wires, pointing out how the
anomalous results of these experiments (which were not
fully understood at the time) can be explained if one takes
into account the effects of measurement probes. Finally,
we shall discuss the results of a set of experiments we per-
formed to demonstrate the effects of probes on quantum
interference in mesoscopic Ag wires with different probe
configurations.
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A. Conductance fluctuations

Benoit et al.’ reported the results of a detailed study of
conductance fluctuations in Au and Sb wires. These de-
vices had multiple measurement probes, so that the fluc-
tuations could be measured simultaneously in wires of
different lengths. This work demonstrated that the am-
plitude of the fluctuations could be considered “‘univer-
sal” only on the scale of /,: for wires with measurement
probes closer than [/ # the authors observed conductance
fluctuations of amplitude much larger than e?/h. Similar
results were also obtained by Skocpol et al.*

Benoit et al. also showed that a description in terms of
voltage (or, equivalently, resistance) fluctuations ap-
peared to be more fundamental than a description in
terms of fluctuations in the conductance of a sample.
They found that for very small samples, the fluctuations
in the voltage across the sample were essentially indepen-
dent of the length of the sample. Their results are repro-
duced in Fig. 9, which shows the symmetric and antisym-
metric (with respect to magnetic field) voltage fluctua-
tions as a function of the length of the sample normalized
to /,. The antisymmetric voltage fluctuations are essen-
tially independent of the length of the sample. For
L <l¢, the symmetric voltage fluctuations are also in-
dependent of the length of the sample; for L >1,, howev-
er, they grow as (L /I 4,)1/ 2, consistent with the predic-
tions of the two probe theories. We have also plotted in
Fig. 9 the theoretical predictions of Egs. (29) and (30),
multiplied by a constant to agree with the data in the lim-
it L —0. In spite of the fact that the data are for samples

1.5 T
from Benoit et al.,(Ref. 3).
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1.0 - -
-
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FIG. 9. Experimental symmetric and antisymmetric voltage
fluctuations of one-dimensional Au and Sb metal wires, from
Ref. 3. Solid symbols, symmetric contributions; open symbols,
antisymmetric contributions. Circles, Sb sample at 40 mK; tri-
angles, Sb sample at 300 mK; squares, Au sample at 40 mK.
Solid curves, theoretical predictions of Egs. (29) and (30), multi-
plied by a constant to agree with the data in the limit L —0.
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with multiple measurement probes, and the theory de-
scribes samples with only four measurement probes, the
agreement is still quite encouraging.

More recently, Haucke et al.?® have reported measure-
ments of the correlation field B, for these same Au and
Sb wires. Their results are reproduced in Fig. 10, for
both the local and the nonlocal case. The similarity to
the theoretical predictions shown in Fig. 8 is evident.
Once again, this emphasizes the fact that the correlation
field is strongly dependent on the probes, and that, in the
mesoscopic size regime, one cannot use B, alone to deter-
mine the phase coherence length.

Thus, as predicted, measurement probes affect both the
magnitude and the magnetic-field dependence of the fluc-
tuations in mesoscopic samples. It should be pointed,
however, that the presence of intermediate spin-orbit
scattering will also affect the amplitude and characteristic
field scale of the fluctuations.?’ The difference between
the effect of spin-orbit scattering and that of probes is
that the effects of spin-orbit scattering can be seen even in
macroscopic samples. For the proper analysis of data
from mesoscopic samples, one should include the effects
of measurements probes as well as spin-orbit scattering.

B. Weak localization

Narrow wires

One of the first experiments on short 1D wires was per-
formed by Masden and Giordano.’° They measured the
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FIG. 10. Experimental correlation field B, of one-

dimensional Au and Sb metal wires for local and nonlocal mea-
surement configurations as a function of the length of the wires,
from Haucke et al., Ref. 28. Positive abscissa, local measure-
ment; negative abscissa, nonlocal measurement. Triangles refer
to data taken at 10-nA drive current; diamonds to data at 20-nA
drive current. Dashed lines are guides to the eye.
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resistance of AuPd wires of length L =0.2-1.0 um as a
function of temperature. The wires connected two large
Ag probes, as in the geometry of Fig. 4(c). The low-
temperature resistance of such wires is expected to rise as
the temperature is lowered due to contributions from
weak-localization and electron-electron interaction
effects. The authors observed such a resistance increase,
but found that the magnitude of the resistance rise was
dependent on the length of the wire, being smaller for the
shorter samples. They interpreted their results as imply-
ing that the length of the sample acted as a cutoff for /,.
Since the 1D weak-localization contribution is propor-
tional to [/ # this would imply a smaller contribution for
the shorter wires. However, due to a lack of magne-
toresistance data, they were not able to isolate the weak-
localization contribution from the contribution of
electron-electron interactions. In our way of thinking,
the suppression of the weak-localization contribution for
the shorter wires is due to the influence of the thick 2D
probes, which reduce the amplitude of the interference
when L =~=I,. Masden and Giordano’s results are con-
sistent with this picture. Similar results were obtained by
Choi, Tsui, and Palmateer®! in GaAs/Al Ga,_,As het-
erostructures.

Bishop and Dolan® measured weak localization in
long Li wires doped heavily at regular intervals L with Fe
impurities. Since the magnetic Fe impurities should com-
pletely destroy phase coherence in the doped regions,
their sample essentially consisted of a series of short
wires, each of length L. The authors measured wires
with different values of L, and found that the size of the
weak-localization correction was proportional to L.
Similar to Masden and Giordano, they also interpreted
their results in terms of a length-dependent cutoff to /.
Although the saturation observed was not related directly
to the effect of measurement probes, their results can be
described quite well by Eq. (15), with = . This value
of 1 corresponds to the boundary condition C(r,7’)=0 at
the ends of each segment of length L, a boundary condi-
tion induced by the complete randomization caused by
the Fe impurities at each doped region.

C. Effects of probes on short silver wires

We now discuss the results of an experiment we per-
formed to study the effect of measurement probe
geometry on short silver wires. Some of the results of
this study have already been published,!® so we shall not
discuss here the details of sample fabrication and mea-
surement. The samples were fabricated in the two-
measurement probe configurations shown in Figs. 4(a)
and 4(b). Corresponding to each probe configuration,
wires of two different lengths were studied, ~1.3 and ~5
pm. Long (=50 um) wires and 2D films were codeposit-
ed along with the short wires for comparison of material
parameters. Table I lists the relevant parameters of the
short wires we measured.

Silver exhibits strong spin-orbit scattering; in the pres-
ence of such spin-dependent scattering, it is well known
that the weak-localization contribution'*!® breaks up
into a singlet part and a triplet part
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TABLE I. Sample parameters. Ry is at 4.5 K. Narrow-probe configuration corresponds to Fig. 4(a),
wide probe configuration to Fig. 4(b). Values of /, are at 1.25 K, except for sample B, for which satis-
factory fit at 1.25 K was not possible because of the presence of conductance fluctuations. [y, for a par-
ticular sample was found to be independent of temperature (Ref. 22). Samples 4, B, C, and E were
codeposited; samples D and F were codeposited.
Ry L Probe 1,(1.25 K) Iy
Sample (Q) (um) configuration (g m) (. m)
A 1.4 1.3 Narrow 2.2 0.43
B 1.4 1.4 Wide 1.3 (3.5 K) 0.41
C 2.2 4.9 Narrow 1.5 0.30
D 1.1 4.8 Wide 3.0 0.65
E 1.4 53 Long wire 2.3 0.39
F 1.2 53 Long wire 2.9 0.51
30 : - - AR _ _, ;
(a) T=1.25 K R sf L) +5fy), (38)

Long wire

Narrow
probes

—60 -30 0o 30 60

10%6R/R

-10 -50 o 50 100
B (mT)

FIG. 11. (a) Symmetric component of the experimental mag-
netoresistance of L ~1.3-um Ag wires, samples 4 and B, along
with their codeposited long wire, sample E, 1.25 K. Sample 4
is a short wire in the narrow-probes configuration [ W, = W, Fig.
4(a)]; sample B is in the wide-probes configuration [Fig. 4(b)].
14 as determined by weak-localization fits to the data from the
long wire is 2.39 um. (b) Data for the same three wires at 15 K.
Solid line, long wire, sample E; triangles, sample A; circles,
sample B. [, at this temperature is 0.29 um.

where f(l,) is the magnetoresistance formula appropri-
ate to the sample geometry, and /, is given by

I2=12+417 . (39)

This leads to a positive MR at low magnetic fields instead
of the negative MR expected from Eq. (15).

The magnetoresistance of our short wires is in general
asymmetric with respect to the zero of magnetic field due
to the presence of sample specific effects. Such asym-
metries have been seen in short metal wires by many
groups.! For weak localization, we are only interested in
the symmetric contribution, since the weak localization is
expected to be symmetric. Thus all the weak-localization
MR shown below has been symmetrized with respect to
magnetic field.

1. Weak localization

Figure 11(a) shows the low-field MR of the two =~1.3-
pum wires at 1.25 K, along with data from their codeposit-
ed long wire. This figure demonstrates the most striking
effect of the probes on the weak-localization MR of the
short wires. The magnitude of the MR of both short
wires is reduced in comparison to that of the long wire.
The MR of the short wire with narrow probes is about
half that of the long wire, and the MR of the short wire
with wide probes is less than a tenth. [, for these wires at
this temperature is 2.39 um, as determined by fitting the
low-field MR of the codeposited long wire to Eq. (16).
From Egs. (16) and (17), we expect the MR of the short
wires to be reduced with respect to the MR of the corre-
sponding long wire. For the short wire with two narrow
probes of width W on either end, n=2a, so that the MR
should be reduced by a factor of 2. This is precisely what
is seen in Fig. 11(a). For the short wire with wide probes,
7 is larger still, leading to a greater reduction.

At higher temperatures, where L >>1,, we expect the
magnitude of the MR of all three wires to be approxi-
mately the same. Figure 11(b) shows data for the same
three wires at 15 K, where / ¢4=0.29 um. All three curves
are of the same magnitude.
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We now turn to another striking effect of the probes on
weak localization in short wires. Figure 12 shows the
symmetrized low-field MR of sample B, the ~1.3-um
wire with wide probes, at 3.5 K. [, at this temperature,
as determined from the codeposited long wire, is 1.32 um,
so that we are in the regime L/I,~1. Note the sharp
rise in the MR near zero magnetic field. It should be re-
called that a similar feature is seen in the weak localiza-
tion MR of macroscopic 2D films. Indeed, this feature in
the MR of the short wire is due to the influence of the ad-
jacent 2D probes. Figure 12 also shows a fit to the weak-
localization formula appropriate for the geometry of sam-
ple B, Eq. (15). This fit accounts nicely for the sharp rise
in the MR. For comparison, we also show the best fit to
the formula appropriate for a short wire with narrow
probes. By adjusting the value of /, in this formula, we
can account for the reduced magnitude of the MR of
sample B, but we cannot fit the characteristic rise in the
MR at low fields.

The 2D nature of the MR in Fig. 12 is not due to an
inadvertent inclusion of the 2D probes in the measured
sample, because the four-terminal nature of the measure-
ment ensures that we measure only the wire between the
probes. If we tried to fit the data for the short wire with
wide probes to a sum of pure 1D and pure 2D magne-
toresistances, we would have to assume that 90% of the
total measured resistance of the sample is due to the 2D
measurement probes. Even then, the fit is not good.
Since it is safe to assume that the majority of the mea-
sured resistance of the sample is due to the short wire it-
self (due to the four-point nature of the measurement),
this possibility can be discounted.

For short samples with only narrow probes, the effect
of measurement probes on the shape of the MR is a bit

—100 -50 (o} 50 100
B (mT)

FIG. 12. Symmetric component of the experimental low-field
magnetoresistance of sample B, a 1.36-um wire with wide
probes, at 3.5 K. Solid line, fit to the full theory, Eq. (15) with
7, defined by Eq. (19) and /,=1.3 pum, [, =0.43 um. Dashed
line, fit to the full theory appropriate for a short wire with nar-
row probes, with /,=0.7 um and [, =0.46 um.
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more subtle. When all the measurement probes are of the
same width as the sample itself, the shape of the MR is
identical to that of the long wire, although the magnitude
of the MR may be reduced by a factor as large as the
number of probes on one end of the wire. This is because
the field dependence of 7 is the same as the field depen-
dence of «a; the field dependences of both parameters
comes through the field dependence of /,(B), which is
given by Eq. (18) with the same value of W for both wire
and probes. When the width of the probes W, is different
from the width of the wire W, the field dependences of a
and 7 are no longer identical.

2. Electron phase coherence lengths in short wires

We have seen that measurement probes affect both the
magnitude and the shape of the low-field MR of short
wires, and that with the formulas we derived we are able
to fit the MR data quite well. The free parameter in these
fits is /4, and a further check on the theory is to compare
the values of /, obtained to those inferred from the
codeposited long wires. This is important because in
some cases, one may also be able to fit the MR data for a
short wire with the long-wire formula, but with a
different value of /,. For example, for the short wire with
four narrow measurement probes, in the limit L <</ #
the long-wire formula with half the “correct” value of /
will give a reasonable fit.

Values of / ¢ for all four wires, the two wires with wide
probes (samples B and D) and the two wires with narrow
probes (A and C) can be conveniently represented on a
single plot by scaling the length of each sample with /;
inferred from its codeposited long wire, which we shall
denote / g’"g wire  These data are shown in Fig. 13 on a
log-log plot. On this plot, data for the long wires are, by
definition, straight lines with slope —1. The values of /,
for sample C in this plot have been normalized to the R
and W of the long wire, sample E, assuming that the
electron-electron scattering rate at low temperatures is
determined by scattering off electromagnetic fluctua-
tions.>* Data for sample B, the 1.4-um wire with wide
probes, could not be fit at the two lowest temperature due
to the presence of conductance fluctuations. As can be
seen, the agreement with / };’"g wire for all four short wires
is excellent. We also show the values of /, inferred for
the L =4.8-um wire with wide probes, sample D, using
the long-wire formula. For this wire, since L >>1 s at all
temperatures measured, the 2D characteristic of the pads
is not as prominent, and fits to the long-wire MR formula
are reasonable. Nonetheless, the values so obtained are
smaller than / f;’“g wire even for L ~] };’"g wire,

3. Conductance fluctuations

Although there have been a number of studies on the
effect of probes on conductance fluctuations, there has
been no investigation of the comparative effects of probes
of different size. From both the theoretical discussion on
conductance fluctuations given earlier, and the experi-
mental data on weak localization shown above, we expect
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FIG. 13. Experimental [, vs L /1gme ¥ire for T=1.25-20 K.
Solid lines, with slope —1, are data for long wires, samples E
and F. (a) Data for short wires with wide probes, samples B and
D. Solid circles from fits to full theory, Eq. (15); open circles
from fits to long-wire formula, Eq. (16). (b) Data for short wires
with narrow probes, samples 4 and C. Solid circles from fits to
Eq. (15). Data for sample C have been normalized to the Ry
and W of sample E, as discussed in the text.

that samples with larger measurement probes should
show a smaller amplitude of conductance fluctuations.
This is indeed the case. Figure 14 shows the rms ampli-
tude of the conductance fluctuations as a function of the

2
(L/24)

FIG. 14. Experimental rms amplitude of the conductance
fluctuations for the short Ag wires as a function of L /I)"8 ¥,
Rectangles, data for the short wires with narrow probes, sam-
ples A4 and C; circles, data for the short wires with wide probes,
samples B and D. The solid lines are guides to the eye. The
lengths of the short wires with narrow probes were such that
the data did not fall into the intermediate length regime.
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length of the sample normalized to /,, for the samples
with narrow probes and the samples with wide probes
discussed above. At large L /I, the amplitude of the
fluctuations for both types of sample is approximately the
same. As L /l;,—0, however, the amplitude of the fluc-
tuations for the samples with narrow probes becomes
larger than that for the samples with wide probes. Un-
fortunately, the data are in the high-temperature regime
(I7 <<l4), so that a detailed quantitative comparison to
the theory we have developed is not possible. Nonethe-
less, the trend in the data is quite clear: smaller probes
lead to a larger amplitude of the fluctuations. We expect
this trend to continue into the low-temperature regime.

IV. CONCLUSIONS

Weak localization has been studied now for over a de-
cade. Only with the advent of more quantitative theories
could localization be used as a tool to study other prob-
lems in the physics of disordered systems. Some of these
problems are quite difficult to address by any other
means. The study of weak localization in three-, two-,
and one-dimensional systems has been used with great
success to infer various useful microscopic scattering
lengths 1, I ,, and [ for electron transport in metallic
structures. In these cases, at least one of the sample di-
mensions is much larger than any of the microscopic
scattering lengths. It is useful to investigate electron-
scattering mechanisms in the regime where all the dimen-
sions of the sample are comparable to or less than the
relevant microscopic length scale. To do this, one re-
quires a means of inferring electron-scattering lengths
from data on samples in the mesoscopic size regime.

This paper provides a quantitative theory of weak lo-
calization for mesoscopic samples. The theory is applic-
able to short wires with virtually any probe configuration,
and the formalism we have developed can be extended
easily to more complicated sample geometries. The
agreement with experimental results is excellent. The
phase coherence lengths obtained by fitting weak-
localization data from mesoscopic samples to this theory
are consistent with the phase coherence lengths obtained
from earlier studies on macroscopic films and wires.
Thus we now have a means of determining electron phase
coherence lengths in the mesoscopic size regime.

In addition, we have found it appealing that the effect
of probes can be seen directly in the magnetoresistance
due to weak localization. The physical insight one devel-
ops in such a study has been valuable in our study of con-
ductance fluctuations. For example, we point out the
analogy between weak-localization magnetoresistance
and the magnetic-field autocorrelation function for the
conductance fluctuations. By examining the simpler case
of weak localization, one can make qualitative predic-
tions about the more complicated case of conductance
fluctuations.

In some cases, the low-field weak-localization magne-
toresistance is either absent (as would be the case if the
sample had magnetic impurities) or is masked by much
larger conductance fluctuations. Instead of weak locali-
zation, one could then hope to use the conductance fluc-
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tuations themselves to determine the electron phase
coherence length, by fitting the measured correlation
function to theoretical predictions. Unfortunately, we
cannot make quantitative predictions for conductance
fluctuations for an arbitrary sample geometry. So far, be-
cause the mathematics becomes intimidating as one goes
to complicated geometries, we can make predictions for
only the simplest cases. This is not necessarily a restric-
tion. We do, after all, have predictions in closed form for
four-probe 1D wire with 1D probes of any width, and one
can always make a sample in this configuration. Perhaps
a greater restriction is that all the multiprobe theories for
fluctuations that we are aware of, including ours, deal
only with the low-temperature regime /- >>1,. Very few
metallic samples actually fall into this regime. Only if the
electron phase coherence length saturates at low temper-
atures (due to the presence of paramagnetic impurities at
low magnetic fields) will the sample be in the low-
temperature regime.

Thus much more work needs to be done to obtain a
quantitative multiprobe theory for conductance fluctua-
tions which is valid in all temperature regimes. Why is
there a need for such a theory? As we have pointed out,
one could then use conductance fluctuations much in the
way one uses weak localization, as a tool to determine
phase coherence lengths in regimes where weak localiza-
tion is absent. However, as pointed out in Sec. IIB1,
there is the interesting possibility that the phase coher-
ence that determines conductance fluctuations may be
more robust than the phase coherence responsible for
weak localization. There appears to be some experimen-
tal evidence® in support of this, although a thorough
study is required and such a study needs a quantitative
multiprobe theory of conductance fluctuations in the
high-temperature regime.
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APPENDIX: TWO-DIMENSIONAL PROBES
IN A MAGNETIC FIELD

Let the plane of the 2D film be in the 7,0 plane in the
cylindrical coordinate system, with the magnetic field
B=B2%. In the cylindrical gauge A=(Br/2)0, the homo-
geneous part of Eq. (6) becomes>’

2
_13 |3 eB | ,_ 1 3
r or | or # r2 36*
12 |8 1+ L lcinm=0. (Al
h léZD

Consider solutions of the form
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C(r,0)=(1/2m)2R (r)e™? . (A2)

We are interested in solutions with m =0. The equation
for R (r) then becomes
d> 1d

dr? r dr

2 1
r2———2
I5p

eB

7 R (r)=0.

(A3)

Making the transformation £=(eB /#)r? and writing
R (&)=w (&)exp(—&/2), we obtain the equation for w(§),

(1= — | (A4)

ag ag” 278 ||V

2 B
d d_[1+_¢

where B, =7i/4el ﬁ,ZD. The general solution is in terms of
confluent hypergeometric functions

w(E)=CO[L+(B,/B),;;§]+DY[L+(B,/B), ;€] ,
(A5)

where C and D are constants. Since ®—0 as §—0, we
set C =0. The solution to Eq. (A1) is

C(r,r')=D exp[ —(eB /2#)r?]

XWY[L+(B,/B),1;(eB /A)r?] . (A6)

To determine D, we must specify the boundary condi-
tions. We would like to specify the boundary condition
at r =0 since this will be useful for writing the node equa-
tions. However, ¥ diverges as r—0. This is familiar in
the calculation of the 2D weak-localization magnetoresis-
tance. There the problem is avoided by introducing a
cutoff in the g space at 1/I. In real space this is
equivalent to specifying the boundary condition at r =1.
Setting C(r,r')=C, at r =1, we have

C,=D exp(—2B/B,)¥[;+(B,/B),1;(B/4B,)] . (A7)
Since (B /4B,)) is small we can take the small argument of

the V¥ function, and equate the exponential to unity to ob-
tain

C,T[L+(B4/B)]

b=- In(B /4B,)+ Y[ +(B,/B)]

(A8)

I is the gamma function and 1 is the digamma function.
To determine the constant 7, in Eq. (14a), we need
lim,_,o(d /dr)C(r,r’). Further note that

lin})\lf’(x, 1;z)=—[xI(1)/T(x +1)z]

and hence we obtain
. 2C,
r{ln(B/4Bo)+¢[%+(B¢/B)]}

lim;d*C(r,r') (A9)

r—0ar
As B—0 this becomes —C,/[rIn(2]n/1)]. The pa-
rameter 1), is obtained from this by integrating over the
angular coordinate which in our approximation is
equivalent to multiplying by 76, the length of the arc at
radius r.
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